173 research outputs found

    The role of unsteadiness in direct initiation of gaseous detonations

    Get PDF
    An analytical model is presented for the direct initiation of gaseous detonations by a blast wave. For stable or weakly unstable mixtures, numerical simulations of the spherical direct initiation event and local analysis of the one-dimensional unsteady reaction zone structure identify a competition between heat release, wave front curvature and unsteadiness. The primary failure mechanism is found to be unsteadiness in the induction zone arising from the deceleration of the wave front. The quasi-steady assumption is thus shown to be incorrect for direct initiation. The numerical simulations also suggest a non-uniqueness of critical energy in some cases, and the model developed here is an attempt to explain the lower critical energy only. A critical shock decay rate is determined in terms of the other fundamental dynamic parameters of the detonation wave, and hence this model is referred to as the critical decay rate (CDR) model. The local analysis is validated by integration of reaction-zone structure equations with real gas kinetics and prescribed unsteadiness. The CDR model is then applied to the global initiation problem to produce an analytical equation for the critical energy. Unlike previous phenomenological models of the critical energy, this equation is not dependent on other experimentally determined parameters and for evaluation requires only an appropriate reaction mechanism for the given gas mixture. For different fuel–oxidizer mixtures, it is found to give agreement with experimental data to within an order of magnitude

    A contribution to the great Riemann solver debate

    Get PDF
    The aims of this paper are threefold: to increase the level of awareness within the shock capturing community to the fact that many Godunov-type methods contain subtle flaws that can cause spurious solutions to be computed; to identify one mechanism that might thwart attempts to produce very high resolution simulations; and to proffer a simple strategy for overcoming the specific failings of individual Riemann solvers

    Some observations on mesh refinement schemes applied to shock wave phenomena

    Get PDF
    This workshop's double-wedge test problem is taken from one of a sequence of experiments which were performed in order to classify the various canonical interactions between a planar shock wave and a double wedge. Therefore to build up a reasonably broad picture of the performance of our mesh refinement algorithm we have simulated three of these experiments and not just the workshop case. Here, using the results from these simulations together with their experimental counterparts, we make some general observations concerning the development of mesh refinement schemes for shock wave phenomena

    A parallel adaptive mesh refinement algorithm

    Get PDF
    Over recent years, Adaptive Mesh Refinement (AMR) algorithms which dynamically match the local resolution of the computational grid to the numerical solution being sought have emerged as powerful tools for solving problems that contain disparate length and time scales. In particular, several workers have demonstrated the effectiveness of employing an adaptive, block-structured hierarchical grid system for simulations of complex shock wave phenomena. Unfortunately, from the parallel algorithm developer's viewpoint, this class of scheme is quite involved; these schemes cannot be distilled down to a small kernel upon which various parallelizing strategies may be tested. However, because of their block-structured nature such schemes are inherently parallel, so all is not lost. In this paper we describe the method by which Quirk's AMR algorithm has been parallelized. This method is built upon just a few simple message passing routines and so it may be implemented across a broad class of MIMD machines. Moreover, the method of parallelization is such that the original serial code is left virtually intact, and so we are left with just a single product to support. The importance of this fact should not be underestimated given the size and complexity of the original algorithm

    Post-traumatic osteoarthritis in mice following mechanical injury to the synovial joint

    Get PDF
    We investigated the spectrum of lesions characteristic of post-traumatic osteoarthritis (PTOA) across the knee joint in response to mechanical injury. We hypothesized that alteration in knee joint stability in mice reproduces molecular and structural features of PTOA that would suggest potential therapeutic targets in humans. The right knees of eight-week old male mice from two recombinant inbred lines (LGXSM-6 and LGXSM-33) were subjected to axial tibial compression. Three separate loading magnitudes were applied: 6N, 9N, and 12N. Left knees served as non-loaded controls. Mice were sacrificed at 5, 9, 14, 28, and 56 days post-loading and whole knee joint changes were assessed by histology, immunostaining, micro-CT, and magnetic resonance imaging. We observed that tibial compression disrupted joint stability by rupturing the anterior cruciate ligament (except for 6N) and instigated a cascade of temporal and topographical features of PTOA. These features included cartilage extracellular matrix loss without proteoglycan replacement, chondrocyte apoptosis at day 5, synovitis present at day 14, osteophytes, ectopic calcification, and meniscus pathology. These findings provide a plausible model and a whole-joint approach for how joint injury in humans leads to PTOA. Chondrocyte apoptosis, synovitis, and ectopic calcification appear to be targets for potential therapeutic intervention

    Reducing conflict and containment rates on acute psychiatric wards:The Safewards cluster randomised controlled trial

    Get PDF
    BACKGROUND: Acute psychiatric wards manage patients whose actions may threaten safety (conflict). Staff act to avert or minimise harm (containment). The Safe wards model enabled the identification of ten interventions to reduce the frequency of both. OBJECTIVE: To test the efficacy of these interventions. DESIGN: A pragmatic cluster randomised controlled trial with psychiatric hospitals and wards as the units of randomisation. The main outcomes were rates of conflict and containment. PARTICIPANTS: Staff and patients in 31 randomly chosen wards at 15 randomly chosen hospitals. RESULTS: For shifts with conflict or containment incidents, the experimental condition reduced the rate of conflict events by 15% (95% CI 5.6-23.7%) relative to the control intervention. The rate of containment events for the experimental intervention was reduced by 26.4% (95% CI 9.9-34.3%). CONCLUSIONS: Simple interventions aiming to improve staff relationships with patients can reduce the frequency of conflict and containment. TRIAL REGISTRATION: IRSCTN38001825. Crown Copyright.</p

    Solvent-in-salt electrolytes for fluoride ion batteries

    Get PDF
    The fluoride ion battery (FIB) is a promising post-lithium ion battery chemistry owing to its high theoretical energy density and the large elemental abundance of its active materials. Nevertheless, its utilization for room-temperature cycling has been impeded by the inability to find sufficiently stable and conductive electrolytes at room temperature. In this work, we report the use of solvent-in-salt electrolytes for FIBs, exploring multiple solvents to show that aqueous cesium fluoride exhibited sufficiently high solubility to achieve an enhanced (electro)chemical stability window (3.1 V) that could enable high operating voltage electrodes, in addition to a suppression of active material dissolution that allows for an improved cycling stability. The solvation structure and transport properties of the electrolyte are also investigated using spectroscopic and computational methods

    Positive allosteric modulation as a potential therapeutic strategy in anti-NMDA receptor encephalitis

    Get PDF
    N-methyl-d-aspartate receptors (NMDARs) are ionotropic glutamate receptors important for synaptic plasticity, memory, and neuropsychiatric health. NMDAR hypofunction contributes to multiple disorders, including anti-NMDAR encephalitis (NMDARE), an autoimmune disease of the CNS associated with GluN1 antibody-mediated NMDAR internalization. Here we characterize the functional/pharmacological consequences of exposure to CSF from female human NMDARE patients on NMDAR function, and we characterize the effects of intervention with recently described positive allosteric modulators (PAMs) of NMDARs. Incubation (48 h) of rat hippocampal neurons of both sexes in confirmed NMDARE patient CSF, but not control CSF, attenuated NMDA-induced current. Residual NMDAR function was characterized by lack of change in channel open probability, indiscriminate loss of synaptic and extrasynaptic NMDARs, and indiscriminate loss of GluN2B-containing and GluN2B-lacking NMDARs. NMDARs tagged with N-terminal pHluorin fluorescence demonstrated loss of surface receptors. Thus, function of residual NMDARs following CSF exposure was indistinguishable from baseline, and deficits appear wholly accounted for by receptor loss. Coapplication of CSF and PAMs of NMDARs (SGE-301 or SGE-550, oxysterol-mimetic) for 24 h restored NMDAR function following 24 h incubation in patient CSF. Curiously, restoration of NMDAR function was observed despite washout of PAMs before electrophysiological recordings. Subsequent experiments suggested that residual allosteric potentiation of NMDAR function explained the persistent rescue. Further studies of the pathogenesis of NMDARE and intervention with PAMs may inform new treatments for NMDARE and other disorders associated with NMDAR hypofunction.SIGNIFICANCE STATEMENTAnti-N-methyl-d-aspartate receptor encephalitis (NMDARE) is increasingly recognized as an important cause of sudden-onset psychosis and other neuropsychiatric symptoms. Current treatment leaves unmet medical need. Here we demonstrate cellular evidence that newly identified positive allosteric modulators of NMDAR function may be a viable therapeutic strategy.</jats:p

    Hole Polaron Migration in Bulk Phases of TiO2 Using Hybrid Density Functional Theory

    Get PDF
    [Image: see text] Understanding charge-carrier transport in semiconductors is vital to the improvement of material performance for various applications in optoelectronics and photochemistry. Here, we use hybrid density functional theory to model small hole polaron transport in the anatase, brookite, and TiO(2)-B phases of titanium dioxide and determine the rates of site-to-site hopping as well as thermal ionization into the valance band and retrapping. We find that the hole polaron mobility increases in the order TiO(2)-B < anatase < brookite and there are distinct differences in the character of hole polaron migration in each phase. As well as having fundamental interest, these results have implications for applications of TiO(2) in photocatalysis and photoelectrochemistry, which we discuss
    • …
    corecore