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SUMMARY 

This workshop’s double-wedge test problem is taken from one of a sequence of experiments which 
were performed in order to classify the various canonical interactions between a planar shock wave 
and a double wedge. Therefore to build up a reasonably broad picture of the performance of our 
mesh refinement algorithm we have simulated three of these experiments and not just the workshop 
case. Here, using the results from these simulations together with their experimental counterparts, 
we make some general observations concerning the development of mesh refinement schemes for shock 
wave phenomena. 

I NT ROD UCTION 

For problems governed by disparate physical scales, the potential savings to be gained from using 
local mesh refinement are often so large that any strategy will pay handsome dividends: a poor 
refinement scheme is better than none. Consequently the literature is littered with examples where 
some form of mesh refinement capability has been botched in a problem specific manner. Superficially 
the ‘quick and dirty’ approach appears attractive because the development costs are considerably less 
than those for a general scheme. In practice, however, the development costs of a general scheme can 
be recouped across a wide range of projects, and over time the cost/project becomes negligible. On 
the other hand, wi th  the one-off approach the effective costs accumulate with each passing projcct 
and can become unexpectedly large over time. Moreover since one-off schemes rarely reach maturity, 
they tend to be needlessly expensive to run. Therefore, taken overall, we feel there is no merit in 
pursuing one-off refinement strategies. 

Nevertheless, since an algorithm has to strike a balance between that which is desirable and that 
which is practicable, an element of ‘horses for courses’ remains even amongst general purpose mesh 
refinement schemes. Therefore a method, say, which was designed to provide the cheapest mediuin- 
accuracy solution to a steady flow problem might not be competitive when it comes to producing 
the most accurate solution to a time-dependent problem, and vice versa. Thus some care should be 
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taken in choosing the most appropriate form of mesh refinement before embarking on what might be 
an arduous exercise in software development. Given our research interests( lo], i n  1988 after inuch 
deliberation we plumped for a form of embedded mesh refinement first developed by Berger and 
co-workers[l, 2, 31. 

Our formulation[lO, 131 has now matured well beyond the development stage and so will not be 
described here. Instead we wish to engender some discussion as to tlie strengths and weaknesses of 
different refinement strategies as applied to investigations of shock wave phenomena. Our aim is not 
to promote one scheme over another, but to reveal some pitfalls which await the unwary. Therefore to 
place this discussion in the right context we will first present our numerical results for the workshop 
double-wedge test problem. This problem was inspired by a series of experiments performed by 
Takayama e t  aZ.[15] at  Tohuku University to clarify the various types of reflection processes that can 
occur when a planar shock wave interacts with a double wedge. In view of this, it is worthwhile 
considering more than just the case chosen for the workshop and we will i n  fact present results from 
three different cases. 

Expt. 
#1 

#4 
#2 
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60" 30" 

With reference to the schematic shown in Figure 1, we have simulated the interaction of a planar 
shock wave witli three different doublc-wedge configurations ( 01, 0,). These configuration were chosen 
to match those in the experiinents of Takayama et  al.[15]. Given the instructions for the workshop, 
the flow was modelled using the two-dimensional Euler equations, taking the equation of state to be 
that of a perfect gas with ratio of specific heats (7) set to 1.4 . The Mach number for the incident 
shock ( M s )  was taken to be 2.16 giving a pressure ratio p % / p ,  of 5.28. 

The computational method used for our simulations is the same as in  [ll] i.e. a non-body-fitted grid 
was used in conjunction with a two-step finite-volume integration scheme: The effective resolution 
of the grid was equivalent to that of a uniform mesh of 2240 by 1280 cells. This was obtained using 
two levels of dynamic refinement, each by a factor of 4, on a uniform base grid of 140 by 80 cells. 

Since this paper contains a number of interferograms and schlieren images whose sizes have been 
reduced solely to keep the length of this paper within acceptable limits we have also placed them 
on the World Wide Web at URL http:/ /~ww.icase.edu/"jjq/f lowviz/gal_dtml so that 
they might be viewed a t  their original quality. 

Figure I: Double-wedge configurations used in the experiments of Takayama e t  al.[lti] and our 
numerical simulations. 
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Experiment # 1 
A sequence of schlieren snapshots from our simulation of this interaction are shown in Figure 2. At 
early times, frames (a) and (b), there is single Mach reflection (SMR) of the incident wave from the 
first ramp. At intermediate times, frames (c) and (d), the Mach stem from this primary reflection 
interacts with the second wedge giving rise to a secondary reflection which is also of type SMR. 
At late times, frames (e) to (h), the secondary reflection interferes with the primary reflection. In 
Figure 3 a numerical interferogram is shown with its experimental counterpart. The two images 
are in good agreement, hence there is a reasonable quantitative agreement between simulation and 
experiment. Nevertheless, there are some clear discrepancies on the small scale. For example, in the 
experiment the base of the primary reflected shock has a small lambda foot due to its interaction 
with the boundary layer on the bottom wall of the shock tube (see bottom-left corner of image). This 
feature is missing i n  the numerical image since the simulation assumed that the flow was inviscid. In 
principle, adding viscous terms to the simulation is not difficult. However, a much finer grid would 
have to be used so as to resolve the relevant viscous scales. Thus the cost of the simulation would 
be increased dramatically and in this instance it is debatable whether the small improvements to be 
gained by adding physical viscosity would prove cost effective 

Experiment #2 
A sequence of schlieren snapshots from our simulation of this interaction are shown in Figure 4. At 
early times, frames (a) and (b), there is SMR of the incident wave from the first ramp as in  Experiment 
#l. However, at intermediate times, frames (c) and (d), the reflection of the Mach stem is now 
complex Mach reflection (CMR) rather than SMR. At late times, frames (e) to (h), the secondary 
reflection again interferes with the primary reflection. In Figure 5 a numerical interferogram is shown 
with its experimental counterpart. The two images are i n  reasonable agreement, but the tie-up is 
noticeably poorer than in Experiment #l. Again the discrepancies are due to the lack of physical 
viscosity in the flow model. For example, in the experimental image there is a recirculation zone at 
the apex of the first ramp, and the base of the secondary reflected shock has a lambda foot due to its 
interaction with the boundary layer on the wedge. But these features cannot be reproduced by an 
inviscid simulation. Here the shock-boundary layer interactions are stronger than in Experiment #1 
and have had quite a pronounced affect on the curvature with which both the primary and secondary 
reflected shocks run in to the wall. Consequently there would be some justification for switching to 
a viscous simulation for this experiment. 

Experiment #4 
A sequence of schlieren snapshots from our simulation of this interaction are shown in Figure 6. 
At  early times, frames (b) to (c), the slope of the first wedge is sufficient that there is regular 
reflection (RR) and not SMR as in the other two experiments. At late times, frames (d) to (h), the 
incident shock diffracts around the convex corner formed by the two wedges. In Figure 7 a nuinerical 
interferogram is shown with its experimental counterpart. The two images are in good agreement 
except for those regions where viscous effects are expected to be important. Namely, the vortex core 
near the convex corner, and the foot of the reflected shock where it interacts with the boundary layer 
on the wall of the shock tube. This interaction affects the curvature of the reflected shock and would 
seem to account for the difference in the curvature of the fringes between the computational and 
experimental interferograms. However, the tie-up is sufficiently good that, as in Experiment #1, it 
is not clear that a viscous simulation would be worth the extra effort involved. 



Figure 2: Sequence of schlieren snapshots from the simulation of Experiment #l. 
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(a) Experimental Interferogram, courtesy of Prof. Takayama 

(b) Numerical Interferogram 

Figure 3: Comparison between numerical and experimental interferograms for Experiment # 1. 
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Figure 4: Sequence of schlieren snapshots from the simulation of Experiment #2. 
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(a) Experimental Interferogram, courtesy of Prof. Takayama 

(b) Numerical Interferogram 

Figure 5: Comparison between numerical and experimental interferograms for Experiment #2. 
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. (f’) 

Figure 6: Sequence of schlieren snapshots from the simulation of Experiment #4. 
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(a) Experimental Interferogram, courtesy of Prof. Takayama 

(b) Numerical Interferogram 

Figure 7: Comparison between numerical and experimental interferograms for Experiment #4. 
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DISCUSSION 

Here we restrict ourselves to making some specific observations about the development of mesh 
refinement methods for investigations of unsteady shock wave phenomena, and the reader who is 
unfamiliar with the basic techniques of mesh refinement is directed to[9, 171. 

The majority of mesh refinement schemes give the impression of having been designed solely to 
minimize the number of grid cells that are required to compute a solution of a given resolution 
or accuracy. This design philosophy is presumably based on the notion that the effort required to 
integrate a discretized flow solution decreases as the number of grid cells decreases. But the following 
example demonstrates that the number of grid cells can have surprisingly little bearing on the cost 
of performing a time-dependent simulation and so this particular design philosophy is flawed. 

Consider the propagation of a shock down a uniform mesh of N cells, each of width A x .  If a 
uniform time step is chosen such that the Courant number based on the speed of the shock is one 
(hence the shock traverses one cell per time step), it will take N integrations of N cells for the shock 
to pass through the domain i.e N 2  cell integrations. Now halve one cell in the grid such that there are 
N - 1 cells of width A x  and two of width A x / 2 .  Again if a uniform time step is used to propagate the 
shock through this domain, without violating the CFL condition it will take 2N integrations of N+ 1 
cells to propagate the shock through the domain i.e. 2 N 2  + 2N integrations. Therefore although but 
a single cell has been added to the grid the cost of the simulation has more than doubled. Thus for 
time-dependent problems it is desirable to refine in time as well as space[lO]. Here, using temporal 
refinement, the two small cells would be integrated 2N times and the other N - 1 cells would be 
integrated N times as in the uniform mesh case i.e. a total of N 2  + 3 N  integrations. Thus, for 
N reasonably large, the cost of the refinement becomes negligible. As an alternative to temporal 
refinement one could conceivably opt for an integration scheme which was stable for large Courant 
numbers, but for highly non-linear problems the loss in temporal accuracy would probably prove 
unacceptable. 

A temporal refinement strategy is easily incorporated into hierarchical refinement schemes such 
as those based on quad-trees (e.g. [4]) or embedded patches (e.g. [3, lo]) since it is possible to 
avoid ever having to interpolate across discontinuities[lO]. Ilowever, a temporal refinement strategy 
seems ill-suited to refinement schemes based on unstructured triangular meshes (as typified by[6]), at 
least when combined with a shock-capturing methodology, since one cannot avoid having to perform 
awkward non-linear interpolations at discontinuities. Such interpolations are unlikely to satisfy a 
shock-capturing scheme’s unique smeared shock profile and so would result in spurious oscillations[ lo]. 
One convenient way around this difficulty would be to employ an integration scheme based on floating 
shock-fitting[7, 161 rather than shock-capturing. Then there would be no smeared discontinuities and 
the cause of the problem disappears. This strategy illustrates an important feature of the design of 
mesh refinement methods. It is often better to work around difficulties than to attempt to effect a 
cure. A refinement scheme contains many components and the best schemes seem to be those whose 
components work symbiotically. 

Leaving aside the issue of temporal refinement, minimizing the number of grid cells will not 
automatically lead to an efficient method of refinement. Consider the case of an isolated discontinuity 
which runs oblique to the grid. I t  is clear that cellular quad-tree refinement (say [4]) is more efficient 
than embedded patch refinement (say [lo]) in  terms of the number of cells each method requires to 
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tile the discontinuity. However, it also has tlie larger storage overheads per mesh cell of the two 
associated data structures. For inert shock wave simulations which need only a small number of 
levels of refinement tlie storage overheads from quad-tree refinement are easily tolerated, but this 
might not be the case if the flow contained chemical reaction. Instead of a shock oblique to the grid 
consider a detonation wave which i n  addition to a shock front has some internal structure, albeit on 
a very fine scale, which must be resolved and cannot be captured. In this instance one would need a 
wide swathe of cells to cover tlie reaction zone which might be ten or more levels of refinement down 
in the quad tree because of the disparateness between the width of the reaction zone and tlie distance 
over which the detonation wave needs to be propagated. Therefore although the cells i n  the swathe 
are close to one another spatially they could lie far apart in the quad tree structure, which might 
impact on a parallel implementation of tlie scheme, and each cell would introduce a large overhead 
due to tlie accumulation of pointers down to its level in the data structure. Consequently enibedded 
patch refinement might now prove to be more eEcient because its storage overheads would be so 
much lower and it would better preserve the proximity of cells within the reaction zone. 

Adaptive mesh refinement algorithms, unlike classical numerical methods, entail quite sophisti- 
cated software. Therefore arguments such as the one above must be tempered by the realization that 
specific implementation details can make or break an algorithm in terms of its practical performance. 
In particular the grid data structure needs to be well crafted. For example, the data storage needs 
to be flexible enough to cope with dynamic allocation arid deallocation as local refinement is added 
and removed, and data accesses have to be eficient so as not to impact on performance. Now since 
it is all too easy to underestimate tlie level of conimitrnent required to write, test and debug a pukka 
mesh refinement code, any newcomer would be well advised to take his or her own software skills i n  
to accouiit before choosing to code up any one particular method. 

In fact the number of considerations that must be taken i n  to account before choosing a mesh 
refinement strategy are legion, even when one’s needs are fairly specific. For example, our interests 
lie in investigating complex shock-wave phenomena, and given the results from the previous section 
it would appear that our refinement algorithm is well suited to our purposes. But suppose we were 
dissatisfied with tlie quality of our results for Experiment #2 (Figure 5)  and wanted to perform a 
viscous simulation, would our scheme cope as well as in tlie inviscid case? 

In the past the scheme has been used to perform viscous simulations of shock-boundary layer 
interactions[lO], ancl so there is no reason to believe that it could not cope with a viscous siiiiulation 
of Experiment #2. However, since viscous flow features tend to be anisotropic in nature, such a 
simulation would expose a weakness of our refinement scheme: it does not cope very well with 
anisotropic refinement. The method used[lO] is basically limited to features like boundary layers 
which are affixed to solid surfaces. To refine a free shear layer which might happen to lie oblique to 
the mesh we would be forced to use isotropic refinement which would be needlessly expensive. This is 
an example where a change in the flow model can have a significant impact on the refinement efficiency, 
even though the applicatioii remains unchanged. Thus the correct choice of refinement strategy is 
never straightforward. To complicate matters even further, one cannot ignore the interplay between 
the method of refinement and the method of flow integration. For example, a triangular unstructured 
mesh has the geometric flexibility to allow for efficient anisotropic refinement but a certain amount 
of care must still be taken to generate meshes that are suitab!e for viscous simulations[8]. In  general, 
depending on tlie application, one might wish to compromise the refinement efficiency so as to avoid 
compromising the accuracy of the flow integration (or vice versa). Of course tlie accuracy of a 
refinement scheme is, for the most part, ordained by the monitor functions which determine where 
refinement does or does not take place. 
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As is cominon practice we employ heuristic functions to determine where to refine, and coarsening 
takes place naturally by choosing not to refine and so involves no additional criteria[lO]. For the 
present double wedge problems we used a combination of two monitor functions: density gradients 
were used to locate shocks and a local comparison between density and pressure gradients was 
used to locate contact discontinuities[13]. Now there are numerous reasons why this type of heuristic 
approach is unsatisfactory, not least of which is that it introduces tunable parameters and so increases 
the experience factor needed to operate a refinement scheme reliably. As Warren et aZ.[18] have shown, 
a poorly constructed heuristic monitor function can cause a mesh refinement scheme to home in  on 
an incorrect solution. But this can happen with any refinement function, heuristic or not, which 
provides estimates for the local error without also providing estimates for how the local error affects 
the global error i.e. every refinement function in common use. To a large extent the mesh refinement 
coininunity has been lulled into a €alse sense of security by the general experience that local errors 
are often benign. The test case discussed in [IS] is a gentle reminder that small local errors can 
sometimes tip the balance and result in  large global errors, but other more pathological examples are 
not difficult to find especially where chemical reaction is involved. 

Figure 8 (a) shows a trace of the pressure behind the lead shock front of a one-dimensional 
detonation wave which exhibits a galloping instability[l4]. By normal standards this computation 
would have been thought to be well resolved since 160 mesh points covered the so-called reaction half- 
length (giving some 256,000 cells over the time period shown) when contemporary simulations have 
ten or less points in the reaction half-length. However, when the simulation was repeated with the 
grid spacing halved, the dynamic beliaviour of the detonation wave altered dramatically, see Figure 8 
(b). At first glance one might assume that Figure 8 (b) came from the coarser computation since it 
looks more dissipative in  that a two mode pulsation is decaying to a single mode pulsation. But in 
fact it is the extra dissipation in Figure 8 (a) that sustains a spurious two mode pulsation whereas 
the correct behaviour should be that of a two mode pulsation with a time-attractor h i t  cycle[l4] 
i.e. Figure 8 (b). Interestingly the difference in behaviour arises not from tin error in resolving the 
detonation shock front, but from a failure to resolve an innocuous part of the reaction zone which is 
smooth. 
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Figure 8: Variation in the computed pressure history trace for a galloping detonation wave when the 
mesh spacing is halved[l4]. 
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Clearly there is much room for improvement in the current. crop of criteria used to control refine- 
ment. However, any attempts at devising rigorous mathematically based refinement criteria should 
not ignore certain practicalities. For example, in our simulations it can be necessary to adapt the grid 
tens of thousands of times[l3] and so the method of determining where to refine must be reasonably 
cheap otherwise it would cripple the simulation. Also, the physical scales involved are so disparate 
that one cannot afford the luxury of periodically comparing the solution computed with refinement 
against that computed on a uniform mesh of the same high resolution, as is effectively done in[5], 
because this would require an unrealistic amount of storage. 

For practical purposes the lack of a fool-proof refinement criteria does not undermine the usefulness 
of adaptive mesh refinement schemes for investigating shock wave phenomena, but it does complicate 
matters. Whenever we start to investigate a new problem we perform a sensitivity study to see how 
the computed results vary with, amongst other things, the effective resolution of the computational 
grid as controlled by our chosen refinement criteria. Thus we tool-up to a position where we think 
we can produce a reliable simulation. Note we would do more or less tlie same thing even if we were 
not employing mesh refinement, as past performance is no real guide as to how a numerical scheme 
will fair on a new problem. 

For serious investigations the cost of tooling is generally spread over a parameter study and so is 
not excessive. The only drawback we find is that the results from sensitivity studies are rarely as 
conclusive as we would like. Many shock wave phenomena exhibit physical instabilities and so the 
notion of a grid converged solution is not always clear, or even appropriate sirice the flow model might 
preclude the possibility of having a sensible solution in the limit of the mesh spacing going to zero. For 
example, in [12] we presented results for the vortex sheet produced by a shock wave diffracting over 
a knife edge. These results show that an inviscid simulation can reproduce the correct behaviour and 
yet provide no limiting solution since the numerical dissipation which controls the fine scale structure 
of the vortex sheet, in the absence of physical viscosity, never bottoms out as the grid is refined. On 
the other hand, in some of our simulations of detonation phenomena it is clear that we are incapable 
of reaching a fully converged solution either because the physical scales are too disparate for our 
computing resources or the physical behaviour of the system is non-deterministic in that variations 
in discretization errors, no matter liow small, lead to significant variations in dynamical behaviour. 

Most CFD simulations are performed wi th  the aim of producing quantitative answers to well 
understood problems, in which case the above vagaries are abhorrent. However, much of our work 
is performed in an attempt to fathom behaviour which is not known and simulations are used as a 
qualitative diagnostic and so a certain amount of subjectivity cannot be avoided. In short we use our 
mesh refinement algorithm to perform simulations which are more detailed than would otherwise be 
possible. Consequently we close this discussion without making any attempt to sell our scheme in 
terms of how efficiently it was able to compute the workshop double wedge problem. While this might 
be viewed as contrary we would argue that any results we could present would have little practical 
value: by comparison to our recent studies[l3] the present simulations are so cheap as to be almost 
inconsequential. Moreover it should be appreciated that the cost of performing a time-dependent 
simulation can pale into insignificance when compared to the time taken to decipher the results, and 
to bandy performance figures would lose sight of the fact that our scheme has progressed well beyond 
the development stage and is used as an everyday tool. 
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CLOSING COMMENTS 

At times adaptive mesh refinement appears to be more of an art than a science, therefore on 
a self-indulgent note we close with two quotations that sum up our thoughts on this branch of 
computational fluid dynamics. 

The first quotation is taken from Shakespeare’s Twelfth Night and explains why we feel there will 
always be a plethora of refinement schemes: “some [methods] are born great”.in that they are so 
well suited to a particular class of problem they do not deserve to be replaced by some monolithic 
refinement scheme; “some [methods] achieve greatness’, when they Ieapfrog the field by virtue of 
being able to exploit some new generation hardware feature and so methods tend to pass in  and out 
of fashion; “and some [methods] have greatness thrust upon ’em” in that many fluids researchers 
cannot develop their own refinement code and must make do with whatever is available, so schemes 
that should be put to rest will not die by dint of their users. 

Our second quotation is attributed to the son of the author Alexandre Dumas: “All generalizations 
are dangerous, even this one.” In this paper we have tried to’ emphasize that context is all important 
where mesh refinement is concerned. Therefore whilst the subject is sorely in need of some formalism 
to guide us out of the present heuristic quagmire, there needs to be a realization that not all needs are 
the same. As we have shown, following rigorous criteria which are misplaced can prove disastrous. 
Therefore if some of our observations appear provocative it is only because we are attempting to 
correct an imbalance, as we see it, i n  current thinking. Grid convergence is a case in  point. While 
rigorous Mathematical concepts of convergence are unambiguous, tlie practical concept of a grid 
converged solution to an unsteady problem, where t h k  flow might be physicaIly unstable, is hazy 
to say the least. And so common ground must be found between theoreticians and the practical 
exponents of mesh refinement before any real progress can be made in eliminating the heuristic 
elements from today’s algorithms. 
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