2,852 research outputs found
The role of unsteadiness in direct initiation of gaseous detonations
An analytical model is presented for the direct initiation of gaseous detonations by a blast wave. For stable or weakly unstable mixtures, numerical simulations of the spherical direct initiation event and local analysis of the one-dimensional unsteady reaction zone structure identify a competition between heat release, wave front curvature and unsteadiness. The primary failure mechanism is found to be unsteadiness in the induction zone arising from the deceleration of the wave front. The quasi-steady assumption is thus shown to be incorrect for direct initiation. The numerical simulations also suggest a non-uniqueness of critical energy in some cases, and the model developed here is an attempt to explain the lower critical energy only. A critical shock decay rate is determined in terms of the other fundamental dynamic parameters of the detonation wave, and hence this model is referred to as the critical decay rate (CDR) model. The local analysis is validated by integration of reaction-zone structure equations with real gas kinetics and prescribed unsteadiness. The CDR model is then applied to the global initiation problem to produce an analytical equation for the critical energy. Unlike previous phenomenological models of the critical energy, this equation is not dependent on other experimentally determined parameters and for evaluation requires only an appropriate reaction mechanism for the given gas mixture. For different fuel–oxidizer mixtures, it is found to give agreement with experimental data to within an order of magnitude
Recommended from our members
Notes on methods and sources
Online publication : https://www.brunel.ac.uk/research/Centres/Global-Lives/Research-projects/Modern-Slavery/Notes-on-methodsWe have compiled two databases as part of a research project in which we investigate how funding streams prioritising 'modern slavery' as a foundational category have influenced the language, methodologies, partnerships, and outputs of individuals and institutions working on systems of vulnerability and exploitation. In this piece, we highlight the methods and sources used to create both databases, followed by a discussion of some of the current limitations of the data. In an appendix, we also provide the names of the organisations that have funded (or disbursed funds for) modern slavery-related projects from/within the United Kingdom
Ocean Diplomacy: The Pacific Island Countries\u27 Campaign to the UN for an Ocean Sustainable Development Goal
In this article we examine how Pacific Island Countries (pics) successfully championed a stand-alone Ocean Sustainable Development Goal (sdg) goal at the United Nations (un). We analyse how the un Post-2015 development process provided pics with a unique opportunity to use their experience with collective diplomacy and regional oceans governance to propose this international goal. In this article we establish how pics\u27 national and regional quest to strengthen their sovereign rights over marine resources motivated their diplomatic efforts for an Ocean sdg. The campaign was a significant political achievement, positioning these Large Ocean Island States (lois) as global ocean guardians. We critically evaluate the effectiveness of the pics\u27 diplomatic campaign to secure an international commitment for an Ocean sdg. The pics\u27 advocacy for Goal 14 under Agenda 2030 has enhanced their political effectiveness in the un by improving their recognition by other States as leaders in oceans governance. We suggest their Ocean sdg campaign forms part of a distinct and continuing brand of oceans diplomacy from Oceania
Numerical experiments on short-term meteorological effects on solar variability
A set of numerical experiments was conducted to test the short-range sensitivity of a large atmospheric general circulation model to changes in solar constant and ozone amount. On the basis of the results of 12-day sets of integrations with very large variations in these parameters, it is concluded that realistic variations would produce insignificant meteorological effects. Any causal relationships between solar variability and weather, for time scales of two weeks or less, rely upon changes in parameters other than solar constant or ozone amounts, or upon mechanisms not yet incorporated in the model
Modelling the evolution of distributions : an application to major league baseball
We develop Bayesian techniques for modelling the evolution of entire distributions over time and apply them to the distribution of team performance in Major League baseball for the period 1901-2000. Such models offer insight into many key issues (e.g. competitive balance) in a way that regression-based models cannot. The models involve discretizing the distribution and then modelling the evolution of the bins over time through transition probability matrices. We allow for these matrices to vary over time and across teams. We find that, with one exception, the transition probability matrices (and, hence, competitive balance) have been remarkably constant across time and over teams. The one exception is the Yankees, who have outperformed all other teams
Structure and lattice dynamics of the wide band gap semiconductors MgSiN and MgGeN
We have determined the structural and lattice dynamical properties of the
orthorhombic, wide band gap semiconductors MgSiN and MgGeN using
density functional theory. In addition, we present structural properties and
Raman spectra of a MgSiN powder. The structural properties and lattice
dynamics of the orthorhombic systems are compared to wurtzite AlN. We find
clear differences in the lattice dynamics between MgSiN, MgGeN and
AlN, for example we find that the highest phonon frequency in MgSiN is
about 100~cm higher than the highest frequency in AlN and that
MgGeN is much softer. We also provide the Born effective charge tensors
and dielectric tensors of MgSiN, MgGeN and AlN. Phonon related
thermodynamic properties, such as the heat capacity and entropy, are in very
good agreement with available experimental results.Comment: 9 pages, 11 figures, 6 table
Ignition of thermally sensitive explosives between a contact surface and a shock
The dynamics of ignition between a contact surface and a shock wave is investigated using a
one-step reaction model with Arrhenius kinetics. Both large activation energy asymptotics and
high-resolution finite activation energy numerical simulations are employed. Emphasis is on comparing
and contrasting the solutions with those of the ignition process between a piston and a shock,
considered previously. The large activation energy asymptotic solutions are found to be qualitatively
different from the piston driven shock case, in that thermal runaway first occurs ahead of
the contact surface, and both forward and backward moving reaction waves emerge. These waves
take the form of quasi-steady weak detonations that may later transition into strong detonation
waves. For the finite activation energies considered in the numerical simulations, the results are
qualitatively different to the asymptotic predictions in that no backward weak detonation wave
forms, and there is only a weak dependence of the evolutionary events on the acoustic impedance
of the contact surface. The above conclusions are relevant to gas phase equation of state models.
However, when a large polytropic index more representative of condensed phase explosives is used,
the large activation energy asymptotic and finite activation energy numerical results are found to
be in quantitative agreement
Intraoperative detection of blood vessels with an imaging needle during neurosurgery in humans
Intracranial hemorrhage can be a devastating complication associated with needle biopsies of the brain. Hemorrhage can occur to vessels located adjacent to the biopsy needle as tissue is aspirated into the needle and removed. No intraoperative technology exists to reliably identify blood vessels that are at risk of damage. To address this problem, we developed an “imaging needle” that can visualize nearby blood vessels in real time. The imaging needle contains a miniaturized optical coherence tomography probe that allows differentiation of blood flow and tissue. In 11 patients, we were able to intraoperatively detect blood vessels (diameter, \u3e500 μm) with a sensitivity of 91.2% and a specificity of 97.7%. This is the first reported use of an optical coherence tomography needle probe in human brain in vivo. These results suggest that imaging needles may serve as a valuable tool in a range of neurosurgical needle interventions
- …