404 research outputs found

    The application of predictive modelling for determining bio-environmental factors affecting the distribution of blackflies (Diptera: Simuliidae) in the Gilgel Gibe watershed in Southwest Ethiopia

    Get PDF
    Blackflies are important macroinvertebrate groups from a public health as well as ecological point of view. Determining the biological and environmental factors favouring or inhibiting the existence of blackflies could facilitate biomonitoring of rivers as well as control of disease vectors. The combined use of different predictive modelling techniques is known to improve identification of presence/absence and abundance of taxa in a given habitat. This approach enables better identification of the suitable habitat conditions or environmental constraints of a given taxon. Simuliidae larvae are important biological indicators as they are abundant in tropical aquatic ecosystems. Some of the blackfly groups are also important disease vectors in poor tropical countries. Our investigations aim to establish a combination of models able to identify the environmental factors and macroinvertebrate organisms that are favourable or inhibiting blackfly larvae existence in aquatic ecosystems. The models developed using macroinvertebrate predictors showed better performance than those based on environmental predictors. The identified environmental and macroinvertebrate parameters can be used to determine the distribution of blackflies, which in turn can help control river blindness in endemic tropical places. Through a combination of modelling techniques, a reliable method has been developed that explains environmental and biological relationships with the target organism, and, thus, can serve as a decision support tool for ecological management strategies

    Family composition and age at menarche: findings from the international Health Behaviour in School-Aged Children Study

    Get PDF
    This research was funded by The University of St Andrews and NHS Health Scotland.Background Early menarche has been associated with father absence, stepfather presence and adverse health consequences in later life. This article assesses the association of different family compositions with the age at menarche. Pathways are explored which may explain any association between family characteristics and pubertal timing. Methods Cross-sectional, international data on the age at menarche, family structure and covariates (age, psychosomatic complaints, media consumption, physical activity) were collected from the 2009–2010 Health Behaviour in School-aged Children (HBSC) survey. The sample focuses on 15-year old girls comprising 36,175 individuals across 40 countries in Europe and North America (N = 21,075 for age at menarche). The study examined the association of different family characteristics with age at menarche. Regression and path analyses were applied incorporating multilevel techniques to adjust for the nested nature of data within countries. Results Living with mother (Cohen’s d = .12), father (d = .08), brothers (d = .04) and sisters (d = .06) are independently associated with later age at menarche. Living in a foster home (d = −.16), with ‘someone else’ (d = −.11), stepmother (d = −.10) or stepfather (d = −.06) was associated with earlier menarche. Path models show that up to 89% of these effects can be explained through lifestyle and psychological variables. Conclusions Earlier menarche is reported amongst those with living conditions other than a family consisting of two biological parents. This can partly be explained by girls’ higher Body Mass Index in these families which is a biological determinant of early menarche. Lower physical activity and elevated psychosomatic complaints were also more often found in girls in these family environments.Publisher PDFPeer reviewe

    Predicting cell types and genetic variations contributing to disease by combining GWAS and epigenetic data

    Get PDF
    Genome-wide association studies (GWASs) identify single nucleotide polymorphisms (SNPs) that are enriched in individuals suffering from a given disease. Most disease-associated SNPs fall into non-coding regions, so that it is not straightforward to infer phenotype or function; moreover, many SNPs are in tight genetic linkage, so that a SNP identified as associated with a particular disease may not itself be causal, but rather signify the presence of a linked SNP that is functionally relevant to disease pathogenesis. Here, we present an analysis method that takes advantage of the recent rapid accumulation of epigenomics data to address these problems for some SNPs. Using asthma as a prototypic example; we show that non-coding disease-associated SNPs are enriched in genomic regions that function as regulators of transcription, such as enhancers and promoters. Identifying enhancers based on the presence of the histone modification marks such as H3K4me1 in different cell types, we show that the location of enhancers is highly cell-type specific. We use these findings to predict which SNPs are likely to be directly contributing to disease based on their presence in regulatory regions, and in which cell types their effect is expected to be detectable. Moreover, we can also predict which cell types contribute to a disease based on overlap of the disease-associated SNPs with the locations of enhancers present in a given cell type. Finally, we suggest that it will be possible to re-analyze GWAS studies with much higher power by limiting the SNPs considered to those in coding or regulatory regions of cell types relevant to a given disease

    A particle swarm optimization approach using adaptive entropy-based fitness quantification of expert knowledge for high-level, real-time cognitive robotic control

    Get PDF
    Abstract: High-level, real-time mission control of semi-autonomous robots, deployed in remote and dynamic environments, remains a challenge. Control models, learnt from a knowledgebase, quickly become obsolete when the environment or the knowledgebase changes. This research study introduces a cognitive reasoning process, to select the optimal action, using the most relevant knowledge from the knowledgebase, subject to observed evidence. The approach in this study introduces an adaptive entropy-based set-based particle swarm algorithm (AE-SPSO) and a novel, adaptive entropy-based fitness quantification (AEFQ) algorithm for evidence-based optimization of the knowledge. The performance of the AE-SPSO and AEFQ algorithms are experimentally evaluated with two unmanned aerial vehicle (UAV) benchmark missions: (1) relocating the UAV to a charging station and (2) collecting and delivering a package. Performance is measured by inspecting the success and completeness of the mission and the accuracy of autonomous flight control. The results show that the AE-SPSO/AEFQ approach successfully finds the optimal state-transition for each mission task and that autonomous flight control is successfully achieved

    Direct Repeat 6 from Human Herpesvirus-6B Encodes a Nuclear Protein that Forms a Complex with the Viral DNA Processivity Factor p41

    Get PDF
    The SalI-L fragment from human herpesvirus 6A (HHV-6A) encodes a protein DR7 that has been reported to produce fibrosarcomas when injected into nude mice, to transform NIH3T3 cells, and to interact with and inhibit the function of p53. The homologous gene in HHV-6B is dr6. Since p53 is deregulated in both HHV-6A and -6B, we characterized the expression of dr6 mRNA and the localization of the translated protein during HHV-6B infection of HCT116 cells. Expression of mRNA from dr6 was inhibited by cycloheximide and partly by phosphonoacetic acid, a known characteristic of herpesvirus early/late genes. DR6 could be detected as a nuclear protein at 24 hpi and accumulated to high levels at 48 and 72 hpi. DR6 located in dots resembling viral replication compartments. Furthermore, a novel interaction between DR6 and the viral DNA processivity factor, p41, could be detected by confocal microscopy and by co-immunoprecipitation analysis. In contrast, DR6 and p53 were found at distinct subcellular locations. Together, our data imply a novel function of DR6 during HHV-6B replication

    Alterations in vasodilator-stimulated phosphoprotein (VASP) phosphorylation: associations with asthmatic phenotype, airway inflammation and β(2)-agonist use

    Get PDF
    BACKGROUND: Vasodilator-stimulated phosphoprotein (VASP) mediates focal adhesion, actin filament binding and polymerization in a variety of cells, thereby inhibiting cell movement. Phosphorylation of VASP via cAMP and cGMP dependent protein kinases releases this "brake" on cell motility. Thus, phosphorylation of VASP may be necessary for epithelial cell repair of damage from allergen-induced inflammation. Two hypotheses were examined: (1) injury from segmental allergen challenge increases VASP phosphorylation in airway epithelium in asthmatic but not nonasthmatic normal subjects, (2) regular in vivo β(2)-agonist use increases VASP phosphorylation in asthmatic epithelium, altering cell adhesion. METHODS: Bronchial epithelium was obtained from asthmatic and non-asthmatic normal subjects before and after segmental allergen challenge, and after regularly inhaled albuterol, in three separate protocols. VASP phosphorylation was examined in Western blots of epithelial samples. DNA was obtained for β(2)-adrenergic receptor haplotype determination. RESULTS: Although VASP phosphorylation increased, it was not significantly greater after allergen challenge in asthmatics or normals. However, VASP phosphorylation in epithelium of nonasthmatic normal subjects was double that observed in asthmatic subjects, both at baseline and after challenge. Regularly inhaled albuterol significantly increased VASP phosphorylation in asthmatic subjects in both unchallenged and antigen challenged lung segment epithelium. There was also a significant increase in epithelial cells in the bronchoalveolar lavage of the unchallenged lung segment after regular inhalation of albuterol but not of placebo. The haplotypes of the β(2)-adrenergic receptor did not appear to associate with increased or decreased phosphorylation of VASP. CONCLUSION: Decreased VASP phosphorylation was observed in epithelial cells of asthmatics compared to nonasthmatic normals, despite response to β-agonist. The decreased phosphorylation does not appear to be associated with a particular β(2)-adrenergic receptor haplotype. The observed decrease in VASP phosphorylation suggests greater inhibition of actin reorganization which is necessary for altering attachment and migration required during epithelial repair

    Asymmetric recurrent laryngeal nerve conduction velocities and dorsal cricoarytenoid muscle electromyographic characteristics in clinically normal horses

    Get PDF
    The dorsal cricoarytenoid (DCA) muscles, are a fundamental component of the athletic horse’s respiratory system: as the sole abductors of the airways, they maintain the size of the rima glottis which is essential for enabling maximal air intake during intense exercise. Dysfunction of the DCA muscle leads to arytenoid collapse during exercise, resulting in poor performance. An electrodiagnostic study including electromyography of the dorsal cricoarytenoid muscles and conduction velocity testing of the innervating recurrent laryngeal nerves (RLn) was conducted in horses with normal laryngeal function. We detected reduced nerve conduction velocity of the left RLn, compared to the right, and pathologic spontaneous activity (PSA) of myoelectrical activity within the left DCA muscle in half of this horse population and the horses with the slowest nerve conduction velocities. The findings in this group of horses are consistent with left sided demyelination and axonal loss, consistent with Recurrent Laryngeal Neuropathy (RLN), a highly prevalent degenerative disorder of the RLn in horses that predominantly affects the left side. The detection of electromyographic changes compatible with RLN in clinically unaffected horses is consistent with previous studies that identified “subclinical” subjects, presenting normal laryngeal function despite neuropathologic changes within nerve and muscle confirmed histologically

    A Platform-Independent Method for Detecting Errors in Metagenomic Sequencing Data: DRISEE

    Get PDF
    We provide a novel method, DRISEE (duplicate read inferred sequencing error estimation), to assess sequencing quality (alternatively referred to as “noise” or “error”) within and/or between sequencing samples. DRISEE provides positional error estimates that can be used to inform read trimming within a sample. It also provides global (whole sample) error estimates that can be used to identify samples with high or varying levels of sequencing error that may confound downstream analyses, particularly in the case of studies that utilize data from multiple sequencing samples. For shotgun metagenomic data, we believe that DRISEE provides estimates of sequencing error that are more accurate and less constrained by technical limitations than existing methods that rely on reference genomes or the use of scores (e.g. Phred). Here, DRISEE is applied to (non amplicon) data sets from both the 454 and Illumina platforms. The DRISEE error estimate is obtained by analyzing sets of artifactual duplicate reads (ADRs), a known by-product of both sequencing platforms. We present DRISEE as an open-source, platform-independent method to assess sequencing error in shotgun metagenomic data, and utilize it to discover previously uncharacterized error in de novo sequence data from the 454 and Illumina sequencing platforms

    Lifted graphical models: a survey

    Get PDF
    Lifted graphical models provide a language for expressing dependencies between different types of entities, their attributes, and their diverse relations, as well as techniques for probabilistic reasoning in such multi-relational domains. In this survey, we review a general form for a lifted graphical model, a par-factor graph, and show how a number of existing statistical relational representations map to this formalism. We discuss inference algorithms, including lifted inference algorithms, that efficiently compute the answers to probabilistic queries over such models. We also review work in learning lifted graphical models from data. There is a growing need for statistical relational models (whether they go by that name or another), as we are inundated with data which is a mix of structured and unstructured, with entities and relations extracted in a noisy manner from text, and with the need to reason effectively with this data. We hope that this synthesis of ideas from many different research groups will provide an accessible starting point for new researchers in this expanding field
    corecore