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Asymmetric recurrent laryngeal 
nerve conduction velocities and 
dorsal cricoarytenoid muscle 
electromyographic characteristics 
in clinically normal horses
Marta Cercone1, Caitlin M. Hokanson1, emil olsen  2, Norm G. Ducharme1, Lisa M. Mitchell1, 
Richard J. piercy2 & Jon Cheetham  1

the dorsal cricoarytenoid (DCA) muscles, are a fundamental component of the athletic horse’s 
respiratory system: as the sole abductors of the airways, they maintain the size of the rima glottis which 
is essential for enabling maximal air intake during intense exercise. Dysfunction of the DCA muscle 
leads to arytenoid collapse during exercise, resulting in poor performance. An electrodiagnostic study 
including electromyography of the dorsal cricoarytenoid muscles and conduction velocity testing 
of the innervating recurrent laryngeal nerves (RLn) was conducted in horses with normal laryngeal 
function. We detected reduced nerve conduction velocity of the left RLn, compared to the right, and 
pathologic spontaneous activity (psA) of myoelectrical activity within the left DCA muscle in half of 
this horse population and the horses with the slowest nerve conduction velocities. The findings in this 
group of horses are consistent with left sided demyelination and axonal loss, consistent with Recurrent 
Laryngeal Neuropathy (RLN), a highly prevalent degenerative disorder of the RLn in horses that 
predominantly affects the left side. The detection of electromyographic changes compatible with RLN 
in clinically unaffected horses is consistent with previous studies that identified “subclinical” subjects, 
presenting normal laryngeal function despite neuropathologic changes within nerve and muscle 
confirmed histologically.

Horses are highly developed athletes, able to reach a maximum speed approaching 88 Km/h with a maximal 
oxygen consumption of 200 ml/kg/min1. Despite marked cardiovascular and musculoskeletal adaptations, the 
respiratory system represents a common limiting factor for oxygen delivery and athletic performance1–3. Dilation 
of the rima glottis during exercise is a key, often rate limiting component of the upper airway patency and is main-
tained by contraction of the sole arytenoid abductor, the dorsal cricoarytenoid (DCA) muscle1,4.

The most common cause of dysfunction of the equine DCA muscle, and reduced athletic performance, is 
Recurrent Laryngeal Neuropathy (RLN). This disease is characterized by loss of large, alpha myelinated nerve fib-
ers in (predominantly) the left distal recurrent laryngeal nerve (RLn)5–9. The majority of the histological changes 
detected (Büngner bands, regenerating clusters, paranodal evaginations, and spheroids) are associated with pri-
mary axonal dysfunction and pathological features usually associated with primary myelinopathies (onion bulbs 
and demyelination), but that also occur in primary axonopathies (for the most recent review, see Draper and 
Piercy, 2018)10.

The aim of this study was to conduct a comprehensive electrodiagnostic study of the DCA muscles and recur-
rent laryngeal nerves to gather normative data in horses with normal laryngeal function at rest and during exercise. 
We performed needle electromyographic evaluation of the left and right DCA muscles during spontaneous breath-
ing and following electrical stimulation of the RLn, with measurement of nerve conduction velocities bilaterally.
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Methods
This study was performed in accordance with the PHS Policy on Humane Care and Use of Laboratory Animals, 
federal and state regulations, and was approved by the Cornell University Institutional Animal Care and Use 
Committee (IACUC).

Animals. Horses were included in the study if healthy on physical examination and showing normal laryn-
geal function on endoscopic examination both at rest (Havemeyer scale grade I) and during exercise (grade A)11. 
The Havemeyer grading system evaluates laryngeal function based on symmetry of movement of the arytenoid 
cartilages, describing 4 grades with sub-grades: grade I indicates synchronous and symmetrical movements with 
complete arytenoid abduction, while grade IV is assigned to horses with complete immobility of the arytenoid 
and vocal cord. During exercise the evaluation includes 3 grades: grade A is assigned to horses with full aryte-
noid abduction maintained throughout the exercise, whilst grades B and C are assigned to horses with partial 
abduction and collapse of the arytenoid. Horses were excluded if they had a history of respiratory noise, laryngeal 
function grade II or higher at rest, and/or grade B or C during exercise.

In each horse, electromyographic (EMG) activity of the dorsal cricoarytenoid muscle (DCA) was recorded at 
rest and the RL nerves were localized in vivo using an electrophysiologic method designed based on the technique 
previously described by Steiss et al.12. Nerve conduction velocity (NCV) of the RLn was calculated using the data 
collected.

electromyography. EMG examinations were carried out with a Sierra® Wave® portable system (Cadwell 
Laboratories Inc, Kennewick, WA, USA). The EMG signal was filtered with a notch filter at 60 Hz and a band-pass 
filter allowed frequencies between 30 Hz and 10KHz. The sweep speed was set to 10 ms per division and the 
amplifier gain to 100 µV per division.

All animals were restrained in a stock and sedated with an alpha-2 agonist (detomidine 0.01 mg/kg), injected 
intravenously. Detomidine and other alpha-2 agonists do not affect nerve conduction velocity and motor-evoked 
potentials in humans, and have no effect on the thoraco-laryngeal reflex (which includes the RLn) in horses13,14. 
The laryngeal area was clipped and aseptically prepared on both sides. A monopolar sub-dermal needle electrode 
was placed as ground electrode in the triangle formed by the caudal aspect of the mandible and the jugular and 
linguofacial veins, while a recording 23 G bipolar concentric EMG needle (75 mm × 0.65 mm, recording area 
0.07mm2) (Ambu® Neuroline Needle Electrodes) was inserted percutaneously in the DCA muscle. The right 
DCA muscle was tested before the left. The muscle was localized by palpation of the laryngeal area after identi-
fication of the arytenoid muscular process. The concentric needle was inserted in a dorsolateral-ventromedial 
direction, at an angle of approximately 60° from the horizontal plane and withdrawn slightly, when the lamina of 
the cricoid cartilage was reached. The correct position of the needle was confirmed by detection of electromyo-
graphic activity during the inspiratory phase15–17. The needle position was adjusted to subjectively maximize the 
signal amplitude, but no attempts were made to record maximally high amplitudes. The needle was re-positioned 
within the muscle up to three times. EMG activity of the DCA muscle was recorded at rest to include at least 10 
respiratory cycles. The procedure was repeated on the left side. Data were collected and stored for later processing.

Motor Unit potential (MUp) analysis. An initial qualitative evaluation of the EMG traces was performed 
blindly by two of the authors (MC, EO) to identify the eventual presence of pathologic spontaneous activity (PSA). 
Electromyographic activity considered abnormal includes spontaneous firing of single muscle fibers (fibrillation 
potentials or positive sharp waves, myotonic discharges) or a group of muscle fibers (complex repetitive dis-
charges)18. The abnormal firing pattern were characterized as PSA if lasting more than 10 seconds or detected in 
2 or more traces. Motor Unit Potentials (MUPs) were automatically determined by the EMG software according 
to an automated template matching method that evaluates similar spikes and sorts them into groups. When a 
spike has more than 10 matches, it is considered to represent discharges from a single motor unit. The spikes in 
the group are averaged and the resulting averaged trace was manually corrected by on-screen visual assessment if 
necessary19,20. Each averaged MUP trace was used for automatic quantitative measurements including amplitude 
(µV), duration (ms), number of phases and turns, firing frequency (Hz) and Size Index. The total percentage of 
polyphasic MUPs (>4 phases) was also calculated.

Nerve Conduction study. After recording the DCA muscle electrical activity at rest, RLn transcutaneous 
stimulation was performed, and evoked potentials recorded for subsequent analysis. The RLn stimulation was 
achieved in two locations along the neck, on each side. The ascending (distal) portion of the RLn is located exter-
nally and ventrally to the carotid sheath21 and was reached with a monopolar stimulating needle placed dorsal 
to the jugular vein and perpendicular to the skin in the caudal neck. Supramaximal stimulation at 10 mA and 
100 µsec was then applied to produce stimulation of all axons within the RLn and the corresponding compound 
motor action potential (CMAP) recorded from the DCA muscle. The position of the needle tip was then slightly 
adjusted to produce supramaximal stimulation of the vagal (proximal) portion of the RLn that bilaterally pass 
within the carotid sheaths dorsolateral to the common carotid arteries (Fig. 1)21. The needle was then reposi-
tioned (similarly) to produce stimulation of the ascending and vagal portions of the RLn on the cranial portion of 
the neck, about 10 cm caudally to the larynx. A minimum of three CMAPs were recorded from each stimulation 
site. The distance between the EMG recording needle inserted in DCA and the cranial and caudal neck stimu-
lation sites was measured with a measuring tape. The procedure was then repeated on the left side of the neck.

For each CMAP, the latency was determined as the time from the application of the stimulus to the onset of 
the first waveform deflection from the baseline, representing the conduction of the most rapidly conducting fibers 
within the nerve segment being tested22. The peak-to-peak amplitude was measured on the evoked CMAP on the 
left and right side. NCV was calculated from the mean difference in CMAP onset time between cranial and caudal 
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neck stimulation of the ascending distal or vagal proximal portions of the RLn and the distance between the two 
stimulation sites (NCV = distance/difference in CMAP onset time).

statistical analysis. Descriptive data are expressed as means with standard deviation (SD). Normal 
distribution of motor unit potential and nerve conduction study analysis data was assessed using the 
Kolmogorov-Smirnov test and quantile-quantile (Q-Q) plot. Paired t-test or Wilcoxon rank-sum test were used 
as appropriate for side to side comparison and differences between the ipsilateral distal and proximal RLn por-
tions from each subject. Independent t-test was used for assessing difference between sexes. Pearson’s correlation 
coefficient was used to determine the correlation between the age and the measured data (NCV, CMAP ampli-
tude, MUP analysis). JMP Pro 12 (SAS Institute Inc.) software was used for the analyses. P values < 0.05 were 
considered statistically significant.

Results
Twenty mature horses (mean age 6.5 years ± 3.4, age range 1–16 years; mean height at the withers 157.7 cm ± 5.5, 
height range 152.4–163.6 cm) of different breed (17 Thoroughbreds, 2 Thoroughbred-Crosses, 1 Warmblood) and 
sex (8 females, 9 neutered males, 3 males) were included in the study.

electromyography. Size Index of motor unit potentials (MUPs) was significantly increased in the left dorsal 
cricoarytenoid muscle compared with the right (p = 0.031, two-tailed paired t-test, Fig. 2) suggesting larger motor 
unit sizes on the left. Size Index was chosen as representative of MUPs size because, unlike other EMG variables, 
it is less affected by needle position23. Similarly, the duration of MUPs was increased in the left DCA muscle 
(p = 0.028, two-tailed paired t-test) (Table 1)24.

Nine horses (45%) demonstrated pathologic spontaneous activity in the left DCA muscle, typical of ongoing 
denervation, and mostly consisting of fibrillation potentials and/or positive sharp waves. In 1 subject, PSA was 
present in both the left and right DCA. PSA was never observed exclusively in the right DCA muscle. Polyphasic 
MUPs, (>4 phases), were recorded in 11/20 horses (55%) on the left side (p = 0.0013, two-tailed Fisher’s Exact 
Test) with 3–17% of MUPs having more than four phases. Animals with polyphasic MUPs were significantly 
more likely to have pathologic spontaneous activity (p < 0.001, two-tailed Fisher’s Exact Test).

The electromyographic data were afterwards grouped based on the presence or absence of PSA, but no sig-
nificant difference was detected for any morphologic aspect of the MUPs between horses with or without PSA 
(p > 0.05, independent t-test).

Nerve Conduction Velocity. As anticipated, latency was increased with proximal RLn stimulation com-
pared with distal RLn stimulation, providing clear distinction of a vagal waveform from the distal RLn-evoked 
compound motor action potential (CMAP) (p < 0.001, two-tailed paired t-test, Fig. 1, Table 2). NCV was bilat-
erally decreased in the distal portion of the RLn compared to the proximal portion running within the vagus 
(p < 0.05, two-tailed paired t-test, Fig. 2, Table 2). We observed a marked reduction in NCV in the distal portion 
of the left RLn compared to the right (p < 0.0001, two-tailed paired t-test, Fig. 2, Table 2) at speeds below the 

Figure 1. Schematic of the Nerve Conduction study. (a) Approach to determine nerve conduction velocity 
(NCV) in the proximal and distal portions of the equine recurrent laryngeal nerve (RLn). (b,c) Representative 
compound motor action potentials (CMAP) detected through the recording electrode (RE) in the dorsal 
cricoarytenoid (DCA) muscle following supramaximal stimulation of the RLn distally (red arrows) and 
proximally (green arrows). Differences in onset time (O) used to calculate NCV.
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nerve conduction velocity considered normal for mammalian nerve25–27. CMAP amplitude was reduced follow-
ing proximal versus distal stimulation (p < 0.01, 2-sample test, Wilcoxon Signed Rank test), an expected conse-
quence of temporal dispersion of the potentials over an increased conduction distance22,28–31. Marked reduction 
of the CMAP amplitude generated by the distal left RLn stimulation was also detected (p < 0.05, 2-sample test, 
Wilcoxon Signed Rank test, Table 3)31,32.

Lower NCV of the distal RLn was associated with the presence of pathologic spontaneous activity of the DCA 
muscle (p < 0.001, two-tailed Fisher’s Exact Test). No significant difference between horses with or without 
PSA was found regarding CMAP amplitude, while the left distal RLn showed lower NCV in horses with PSA 
(p = 0.0458, one-tail t-test, Table 3).

No significant effects of age or sex (p > 0.05, Pearson’s correlation coefficient and independent t-test). were 
observed in EMG or NCV data.

Discussion
This study evaluated the electrophysiological characteristics of the sole laryngeal abductor muscle and its inner-
vation in horses with normal laryngeal function.

Figure 2. Nerve Conduction Velocity and Motor Unit Potential analysis results. (a) Nerve conduction 
velocity (NCV) is decreased in the longer left recurrent laryngeal nerve (RLn) and in the distal compared with 
proximal segments of ipsilateral RLn. Different letters indicate statistically significant differences between 
groups (p < 0.001, n = 20). (b) Motor Unit Potential (MUP) Size Index is significantly higher in the left dorsal 
cricoarytenoid (DCA) muscle (*p = 0.031, n = 20).

Left DCA Right DCA

Amplitude (uV) 289.64 ± 124.78 230.18 ± 87.81

Duration (ms) 8.85 ± 1.48 7.55 ± 1.43*
Phases 2.97 ± 0.36 2.95 ± 0.46

Turns 2.28 ± 0.47 2.12 ± 0.5

Frequency (Hz) 5.88 ± 2.12 5.86 ± 2.01

Size Index 0.20 ± 0.45 −0.12 ± 0.33*

Table 1. Motor Unit potentials analysis of the dorsal cricoarytenoid muscles. Multi-Motor Unit Potentials 
analysis of the left and right dorsal cricoarytenoid muscles (DCA). Data are mean ± standard deviation. 
(*p < 0.05).

Left Right

NCV (m/sec)
Proximal 66.77 ± 14.74 63.95 ± 14.89

Distal 41.44 ± 6.3 53.47 ± 10.9***

Latency (ms)

Cranial neck
Proximal (1) 33.12 ± 3.05 22.9 ± 2.98***
Distal (2) 5.12 ± 0.89 4.13 ± 0.78*

Caudal neck
Proximal (3) 27.98 ± 6.19 17.95 ± 2.95*
Distal (4) 12.15 ± 1.44 9.71 ± 1.41***

Table 2. Nerve conduction velocity and latency of the recurrent laryngeal nerves. Nerve conduction 
velocity (NCV) and latency for proximal and distal portions of the left and right recurrent laryngeal nerves. 
Sites of supramaximal stimulation illustrated in Fig. 1 are shown in parentheses. Data are mean ± standard 
deviation. (***p < 0.001, *p < 0.05).
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We observed that the distal portions of the RLn conduct at a slower velocity bilaterally than do the proximal 
(vagal) portions. The difference in NCV between proximal and distal portions of a nerve has previously been 
reported in humans and dogs in several nerves, including the RLn27,33,34. This is attributed to the physiologic 
reduction in axon diameter, myelin thickness and internodal length that occur along the course of a nerve35. 
Similar to the findings from Steiss et al.12, and as reported in humans28, CMAP amplitudes were found to be lower 
after proximal (compared to distal) RLn stimulation, an effect attributed to the increasing conduction distance 
and temporal dispersion of MUPs22.

Distal reduction in conduction velocity has also been demonstrated in the equine radial and median nerves36,37 
but the distal portions of the equine left and right RLn are not symmetrical in their conduction velocity. Previous 
work evaluating NCV of the RLn in mammals with shorter neck length (dog and human) have identified a small, 
but not significant, reduction in left-sided NCV33,38, while horses showed significantly reduced NCV in the distal 
portion of the left RLn for which the associated neuromuscular junctions are approximately 2 m from the cell body39.

Nerve conduction velocity is determined by myelinated fiber diameter, internodal length and myelin thick-
ness22,40. The significantly lower NCV in the left distal RLn is suggestive of smaller fiber diameter, demyelination, 
reduced internode separation and/or myelin thickness in the left distal RLn compared to the right. Unfortunately, 
the major limitation of this study is the lack of morphometric evaluation of the RLn in this horse population. 
Previous studies investigated the RLn’s morphometry in horses, revealing fewer myelinated fibers and lower mean 
fiber diameter in the left distal RLn compared to the right5,41. Besides what seems to be a physiologic asymmetry 
in the RLn morphometry, that would explain the lower left distal NCV in our population, a significant progressive 
distal decrease in the total number of myelinated nerve fibers has been described in horses affected by Recurrent 
Laryngeal Neuropathy (RLN)5,8. RLN is a degenerative disorder of the RL nerves in horses, characterized by 
distal axonopathy, with segmental and paranodal demyelination and remyelination, that involves multiple cycles 
of denervation/reinnervation inducing fiber-type grouping and ultimately atrophy of the intrinsic laryngeal 
muscles5–9,42.

Despite the current reference standard to diagnosed RLN rely on endoscopic evaluation of laryngeal function 
at rest and during exercise43–47, the presence of neuropathologic changes in RLn and intrinsic laryngeal muscles 
in clinically normal horses has been extensively reported5,8,42,48. The existence of “sub-clinically” affected horses, 
whose prevalence is still unclear but reported as high as 30%8, should be considered in the interpretation of our 
findings; indeed, or data suggests the possibility of much higher subclinical disease prevalence.

A previous study on qualitative electromyographic evaluation of the DCA muscle in horses clinically affected 
by RLN, found PSA in the form of fibrillation potentials, positive sharp waves and bizarre high frequency dis-
charge16. PSA is indicative of ongoing denervation18,22 and the equine DCA muscle showed fibrillation potentials 
after denervation49. Our study detected PSA in the left DCA muscle in 45% of the horses with normal laryngeal 
function, again emphasizing the likely high prevalence of subclinical disease.

The overall population also showed significantly higher values of MUPs Size Index and duration in the left 
DCA muscle. MUP duration reflects density, area and firing synchrony of muscle fibers within the motor unit 
and an increase in MUP duration is commonly found in chronic neurogenic disorders with reinnervation, that 
lead to an increased number of fibers per motor unit18,22. The finding in our dataset of left side significantly larger 
MUPs, based on longer duration and higher Size Index, is suggestive of larger motor units in the left compared 
to the right DCA muscle. Increased Size Index also discriminates neuropathic from normal muscle and is corre-
lated to fatty degeneration of muscles affected by axonal neuropathy23,50. Horses sub-clinically affected by RLN 
show progressive neuropathic changes in the intrinsic laryngeal muscle correlated to the extent of damage in 
the distal left recurrent laryngeal nerve5,51. The muscles undergo cycles of denervation and reinnervation with 
initially compensatory enlargement of the remaining motor units through axonal sprouting that results in fiber 
type grouping and hypertrophy51,52. These early histopathologic changes provide a likely explanation of the larger 
MUPs recorded on the left side in our population, but without histologic assessment of the muscles this remains 
a hypothesis.

This study describes the electrophysiologic characteristics of the RL nerve and DCA muscle in clinically nor-
mal horses. We detected significant asymmetry in NCV and motor unit potential characteristics. Whilst these 
finding might represent physiologic variation, with the concurrent detection of electromyographic pathologic 

Horses without PSA Horses with PSA

Left Right Left Right

NCV (m/sec)
Proximal 69.05 ± 15.57 61.91 ± 8.63 64.49 ± 15.3 75.17 ± 4.21

Distal 43.82 ± 5.25 54.51 ± 10.8** 39.06 ± 6.61 52.43 ± 11.45*

CMAP (uV)

Cranial neck
Proximal (1) 1329.92 ± 1059.09 1692.01 ± 1321.71 1467.8 ± 1871.85 2350.48 ± 956.55

Distal (2) 1865.18 ± 1673.50 2422.99 ± 1343.69 1527.17 ± 1125.68 2707.44 ± 1304.93*

Caudal neck
Proximal (3) 2118.1 ± 1336.91 1532.27 ± 1403.09 1348.91 ± 1170.89 2702.9 ± 1372.46

Distal (4) 2924.89 ± 1622.8 2240.85 ± 1452.4 2624.64 ± 1823.45 2553.57 ± 1695.12

Table 3. Nerve conduction velocity and compound motor action potential amplitude of the recurrent laryngeal 
nerves. Nerve conduction velocity (NCV) and compound motor action potential (CMAP) amplitude data 
for proximal and distal portions of the left and right recurrent laryngeal nerves. Animals are categorized 
based on the presence of pathologic spontaneous activity (PSA) in the dorsal cricoarytenoid muscles. Sites of 
supramaximal stimulation illustrated in Fig. 1 are shown in parentheses. Data are mean ± standard deviation. 
(*p < 0.05, **p < 0.01, n = 10).
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spontaneous activity, the data raises the question that this electrophysiologic asymmetry is a consequence of early 
stage RLN. The detection of electromyographic changes compatible with RLN in clinically unaffected horses 
is consistent with previous studies that identified “sub-clinical” subjects, presenting normal laryngeal function 
despite neuropathologic changes on nerve and muscle histological assessment.

Data Availability
The datasets generated and analyzed during the current study are available from the corresponding author on 
reasonable request.
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