29 research outputs found

    Preliminary Study on the Distribution of the Introduced Gall-forming Fly, Cecidochares connexa (Macquart) (Diptera: Tephritidae) for the Biological Control of the Invasive Alien Weed Chromolaena odorata (L.) R.M. King & H. Rob. (Asteraceae) in the Philippines

    Get PDF
    The distribution of Cecidochares connexa (Macquart), a biological control agent of the invasive plant Chromolaena odorata (L.) R.M. King & H. Rob. was determined around the three main islands-Luzon, Visayas, and Mindanao-in the Philippines. A total of 105 sites in 17 localities with C. odorata were surveyed for the presence of C. connexa. Cecidochares connexa was present at 82 sites in eight localities, limited to around Visayas and Mindanao. Some sites where the gall fly was reported were up to 400 km from the initial release sites around Davao, Mindanao. Cecidochares connexa was not found at any of the nine localities surveyed around Luzon. Visual observations showed that the gall fly is having some impact on C. odorata, as evidenced by dead branches and stems. These results show that C. connexa has firmly established in the country and that it has the ability to disperse long distances to new areas. It is likely that C. connexa will continue to disperse further with time. However, a more robust study regarding its presence in other parts of the country and its effectiveness as a biological control agent is needed

    Rice pyramided line IRBB67 (Xa4/Xa7) homeostasis under combined stress of high temperature and bacterial blight

    Get PDF
    Rice bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae (Xoo) implies substantial yield loss to rice. In times of climate change, increasing temperatures are observed and further acceleration is expected worldwide. Increasing temperature often turns into inhibition of host plant defense to pathogens. Recently, a reduced resistance in rice IRBB4 carrying Xa4, but an increase in resistance in IRBB7 carrying Xa7 resistance by increasing temperature has been reported. Influence of high temperature on both R genes (Xa4+Xa7) combined in IRBB67 was analyzed under growth chamber conditions and transcriptomic analysis performed. The pyramided line IRBB67 showed no differences in lesion length between both temperature regimes, demonstrating that non-effectiveness of Xa4 at high temperature did not affect IRBB67 resistance. Moreover, Xa4 complements Xa7 resistance with no Xoo spread in planta beyond the symptomatic area under both temperature regimes in IRBB67. Time course transcriptomic analysis revealed that temperature enhanced IRBB67 resistance to combined heat and Xoo. Our findings highlight altered cellular compartments and point at a role of the cell wall involved in Xoo resistance and heat stress tolerance in both susceptible (IR24) and the resistant (IRBB67) NILs. Interestingly, up-regulation of trehalose-6-phosphatase gene and low affinity cation transporter in IRBB67 suggest that IRBB67 maintained a certain homeostasis under high temperature which may have enhanced its resistance. The interplay of both heat stress and Xoo responses as determined by up-regulated and down-regulated genes demonstrates how resistant plants cope with combined biotic and abiotic stresses. © 2020, The Author(s)

    Rice-Infecting Pseudomonas Genomes Are Highly Accessorized and Harbor Multiple Putative Virulence Mechanisms to Cause Sheath Brown Rot

    Get PDF
    Sheath rot complex and seed discoloration in rice involve a number of pathogenic bacteria that cannot be associated with distinctive symptoms. These pathogens can easily travel on asymptomatic seeds and therefore represent a threat to rice cropping systems. Among the rice-infecting Pseudomonas, P. fuscovaginae has been associated with sheath brown rot disease in several rice growing areas around the world. The appearance of a similar Pseudomonas population, which here we named P. fuscovaginae-like, represents a perfect opportunity to understand common genomic features that can explain the infection mechanism in rice. We showed that the novel population is indeed closely related to P. fuscovaginae. A comparative genomics approach on eight rice-infecting Pseudomonas revealed heterogeneous genomes and a high number of strain-specific genes. The genomes of P. fuscovaginae-like harbor four secretion systems (Type I, II, III, and VI) and other important pathogenicity machinery that could probably facilitate rice colonization. We identified 123 core secreted proteins, most of which have strong signatures of positive selection suggesting functional adaptation. Transcript accumulation of putative pathogenicity-related genes during rice colonization revealed a concerted virulence mechanism. The study suggests that rice-infecting Pseudomonas causing sheath brown rot are intrinsically diverse and maintain a variable set of metabolic capabilities as a potential strategy to occupy a range of environments.Consortium for International Agricultural Research (CGIAR)Global Rice Science Partnership (GRiSP

    DarkCideS 1.0, a global database for bats in karsts and caves

    Get PDF
    Tanalgo, Krizler C., Tabora, John Aries G., de Oliveira, Hernani Fernandes Magalhães, Haelewaters, Danny, Beranek, Chad T., Otálora-Ardila, Aída, Bernard, Enrico, Gonçalves, Fernando, Eriksson, Alan, Donnelly, Melissa, González, Joel Monzón, Ramos, Humberto Fernández, Rivas, Alberto Clark, Webala, Paul W., Deleva, Stanimira, Dalhoumi, Ridha, Maula, Jaycelle, Lizarro, Dennis, Aguirre, Luis F., Bouillard, Nils, Quibod, Ma. Niña Regina M., Barros, Jennifer, Turcios-Casco, Manfredo Alejandro, Martínez, Marcio, Ordoñez-Mazier, Diego Iván, Orellana, José Alejandro Soler, Ordoñez-Trejo, Eduardo J., Ordoñez, Danny, Chornelia, Ada, Lu, Jian Mei, Xing, Chen, Baniya, Sanjeev, Muylaert, Renata L., Dias-Silva, Leonardo Henrique, Ruadreo, Nittaya, Hughes, Alice Catherine (2022): DarkCideS 1.0, a global database for bats in karsts and caves. Scientific Data 9 (1): 155, DOI: 10.1038/s41597-022-01234-4, URL: http://dx.doi.org/10.1038/s41597-022-01234-

    Natural variations in the promoter of OsSWEET13 and OsSWEET14 expand the range of resistance against Xanthomonas oryzae pv. oryzae.

    No full text
    Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is one of the major diseases that impact rice production in Asia. The bacteria use transcription activator-like effectors (TALEs) to hijack the host transcription machinery and activate key susceptibility (S) genes, specifically members of the SWEET sucrose uniporters through the recognition of effector-binding element (EBEs) in the promoter regions. However, natural variations in the EBEs that alter the binding affinity of TALEs usually prevent sufficient induction of SWEET genes, leading to resistance phenotypes. In this study, we identified candidate resistance alleles by mining a rice diversity panel for mutations in the promoter of OsSWEET13 and OsSWEET14, which are direct targets of three major TALEs PthXo2, PthXo3 and AvrXa7. We found natural variations at the EBE of both genes, which appeared to have emerged independently in at least three rice subspecies. For OsSWEET13, a 2-bp deletion at the 5th and 6th positions of the EBE, and a substitution at the 17th position appear to be sufficient to prevent activation by PthXo2. Similarly, a single nucleotide substitution at position 10 compromised the induction of OsSWEET14 by AvrXa7. These findings might increase our opportunities to reduce pathogen virulence by preventing the induction of SWEET transporters. Pyramiding variants along with other resistance genes may provide durable and broad-spectrum resistance to the disease

    Natural variations in the promoter of OsSWEET13 and OsSWEET14 expand the range of resistance against Xanthomonas oryzae pv. oryzae

    No full text
    Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is one of the major diseases that impact rice production in Asia. The bacteria use transcription activator-like effectors (TALEs) to hijack the host transcription machinery and activate key susceptibility (S) genes, specifically members of the SWEET sucrose uniporters through the recognition of effector-binding element (EBEs) in the promoter regions. However, natural variations in the EBEs that alter the binding affinity of TALEs usually prevent sufficient induction of SWEET genes, leading to resistance phenotypes. In this study, we identified candidate resistance alleles by mining a rice diversity panel for mutations in the promoter of OsSWEET13 and OsSWEET14, which are direct targets of three major TALEs PthXo2, PthXo3 and AvrXa7. We found natural variations at the EBE of both genes, which appeared to have emerged independently in at least three rice subspecies. For OsSWEET13, a 2-bp deletion at the 5 th and 6 th positions of the EBE, and a substitution at the 17 th position appear to be sufficient to prevent activation by PthXo2. Similarly, a single nucleotide substitution at position 10 compromised the induction of OsSWEET14 by AvrXa7. These findings might increase our opportunities to reduce pathogen virulence by preventing the induction of SWEET transporters. Pyramiding variants along with other resistance genes may provide durable and broad-spectrum resistance to the disease

    The core secretome of rice-infecting <i>Pseudomonas</i> has signatures of positive selection.

    No full text
    <p>Distribution of Ka/Ks ratio for 123 protein-coding genes, calculated with Yn00 [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0139256#pone.0139256.ref059" target="_blank">59</a>] method on rice-infecting <i>Pseudomonas</i>-all (black, <i>P</i>-all, n = 8), <i>P</i>. <i>fuscovaginae</i> (blue, <i>Pfv</i>, n = 5), and <i>P</i>. <i>fuscovaginae</i>-like (orange, <i>Pfv</i>-like, n = 3) datasets. All secreted protein selected on this graph have <i>p</i>-values ≤ 0.01.</p

    The pan-genome of rice-infecting <i>Pseudomonas</i> reveals high proportion of strain-specific genes.

    No full text
    <p><b>A)</b> Distribution of the 12,351 orthologous gene clusters according to strain-specific genes (only in one genome = 1), dispensable genes (in more than one genome = 2 ≥ x ≤ 7), and core genes (in all genomes = 8). <b>B</b>) Orthologous gene distribution in the <i>P</i>. <i>fuscovaginae</i> (blue) and <i>P</i>. <i>fuscovaginae</i>-like (orange) genomes depicting number of core, dispensable, and strain-specific gene clusters.</p
    corecore