4 research outputs found

    Hypoxia-activated genes from early placenta are elevated in preeclampsia, but not in Intra-Uterine Growth Retardation.

    Get PDF
    BACKGROUND: As a first step to explore the possible relationships existing between the effects of low oxygen pressure in the first trimester placenta and placental pathologies developing from mid-gestation, two subtracted libraries totaling 2304 cDNA clones were constructed. For achieving this, two reciprocal suppressive/subtractive hybridization procedures (SSH) were applied to early (11 weeks) human placental villi after incubation either in normoxic or in hypoxic conditions. The clones from both libraries (1440 hypoxia-specific and 864 normoxia-specific) were spotted on nylon macroarrays. Complex cDNAs probes prepared from placental villi (either from early pregnancy, after hypoxic or normoxic culture conditions, or near term for controls or pathological placentas) were hybridized to the membranes. RESULTS: Three hundred and fifty nine clones presenting a hybridization signal above the background were sequenced and shown to correspond to 276 different genes. Nine of these genes are mitochondrial, while 267 are nuclear. Specific expression profiles characteristic of preeclampsia (PE) could be identified, as well as profiles specific of Intra-Uterine Growth Retardation (IUGR). Focusing on the chromosomal distribution of the fraction of genes that responded in at least one hybridization experiment, we could observe a highly significant chromosomal clustering of 54 genes into 8 chromosomal regions, four of which containing imprinted genes. Comparative mapping data indicate that these imprinted clusters are maintained in synteny in mice, and apparently in cattle and pigs, suggesting that the maintenance of such syntenies is requested for achieving a normal placental physiology in eutherian mammals. CONCLUSION: We could demonstrate that genes induced in PE were also genes highly expressed under hypoxic conditions (P = 5 x 10(-5)), which was not the case for isolated IUGR. Highly expressed placental genes may be in syntenies conserved interspecifically, suggesting that the maintenance of such clusters is requested for achieving a normal placental physiology in eutherian mammals

    Extubation précoce des prématurés d'âge gestationnel inférieur à 32 semaines d'aménorrhée (facteurs prédictifs d'échec et évolution à court terme)

    No full text
    PARIS6-Bibl.Pitié-Salpêtrie (751132101) / SudocPARIS-BIUM (751062103) / SudocSudocFranceF

    Coupling indicators and lumped-parameter modeling to assess suspended matter and soluble phosphorus losses

    No full text
    International audienceFor ecological and economic issues, evaluating the environmental fate of dissolved and suspended matter in catchments and river ecosystems still remains a challenge for the preservation and management of natural resources. Models are useful tools and may help to cope with this challenge, and especially to define the relationships between the state of natural systems and land and river management/uses. As it is difficult -even impossible- to carry out experiments on natural systems such as catchments, models are also useful to test hypotheses about the underlying processes acting on dissolved and suspended losses. We propose a innovative approach to achieve these objectives. By coupling environmental indicators and lumped modeling, this study aims to develop a conceptual and general framework to evaluate and test the functions that drive particulate and dissolved matter flows at the catchment and landscape scales, while respecting the constraint of parsimony for the number of model parameters. Calculated suspended matter (SM) and soluble reactive phosphorus (SRP) losses agreed well with field data. 210Pbex (excess Pb) activities in core sediments were also compared to those of 210Pbex calculated from the filling of the reservoir. Our models are parsimonious and this does not impair their accuracy in reproducing recorded outflows or evaluating the sedimentation processes associated to particulate outflows. Considering the adequacy of our models, we validate the hypothesis that river bank erosion and water table behavior are the driving processes that govern losses of particulate and solute forms of P, in the studied extensive agriculture conditions

    Hypoxia-activated genes from early placenta are elevated in preeclampsia, but not in intra-uterine growth retardation

    No full text
    International audienceBACKGROUND: As a first step to explore the possible relationships existing between the effects of low oxygen pressure in the first trimester placenta and placental pathologies developing from mid-gestation, two subtracted libraries totaling 2304 cDNA clones were constructed. For achieving this, two reciprocal suppressive/subtractive hybridization procedures (SSH) were applied to early (11 weeks) human placental villi after incubation either in normoxic or in hypoxic conditions. The clones from both libraries (1440 hypoxia-specific and 864 normoxia-specific) were spotted on nylon macroarrays. Complex cDNAs probes prepared from placental villi (either from early pregnancy, after hypoxic or normoxic culture conditions, or near term for controls or pathological placentas) were hybridized to the membranes. RESULTS: Three hundred and fifty nine clones presenting a hybridization signal above the background were sequenced and shown to correspond to 276 different genes. Nine of these genes are mitochondrial, while 267 are nuclear. Specific expression profiles characteristic of preeclampsia (PE) could be identified, as well as profiles specific of Intra-Uterine Growth Retardation (IUGR). Focusing on the chromosomal distribution of the fraction of genes that responded in at least one hybridization experiment, we could observe a highly significant chromosomal clustering of 54 genes into 8 chromosomal regions, four of which containing imprinted genes. Comparative mapping data indicate that these imprinted clusters are maintained in synteny in mice, and apparently in cattle and pigs, suggesting that the maintenance of such syntenies is requested for achieving a normal placental physiology in eutherian mammals. CONCLUSION: We could demonstrate that genes induced in PE were also genes highly expressed under hypoxic conditions (P = 5 x 10(-5)), which was not the case for isolated IUGR. Highly expressed placental genes may be in syntenies conserved interspecifically, suggesting that the maintenance of such clusters is requested for achieving a normal placental physiology in eutherian mammals
    corecore