37 research outputs found

    High efficiency of alphaviral gene transfer in combination with 5-fluorouracil in a mouse mammary tumor model

    Get PDF
    Copyright: Copyright 2014 Elsevier B.V., All rights reserved.Background: The combination of virotherapy and chemotherapy may enable efficient tumor regression that would be unachievable using either therapy alone. In this study, we investigated the efficiency of transgene delivery and the cytotoxic effects of alphaviral vector in combination with 5-fluorouracil (5-FU) in a mouse mammary tumor model (4 T1).Methods: Replication-deficient Semliki Forest virus (SFV) vectors carrying genes encoding fluorescent proteins were used to infect 4 T1 cell cultures treated with different doses of 5-FU. The efficiency of infection was monitored via fluorescence microscopy and quantified by fluorometry. The cytotoxicity of the combined treatment with 5-FU and alphaviral vector was measured using an MTT-based cell viability assay. In vivo experiments were performed in a subcutaneous 4 T1 mouse mammary tumor model with different 5-FU doses and an SFV vector encoding firefly luciferase.Results: Infection of 4 T1 cells with SFV prior to 5-FU treatment did not produce a synergistic anti-proliferative effect. An alternative treatment strategy, in which 5-FU was used prior to virus infection, strongly inhibited SFV expression. Nevertheless, in vivo experiments showed a significant enhancement in SFV-driven transgene (luciferase) expression upon intratumoral and intraperitoneal vector administration in 4 T1 tumor-bearing mice pretreated with 5-FU: here, we observed a positive correlation between 5-FU dose and the level of luciferase expression.Conclusions: Although 5-FU inhibited SFV-mediated transgene expression in 4 T1 cells in vitro, application of the drug in a mouse model revealed a significant enhancement of intratumoral transgene synthesis compared with 5-FU untreated mice. These results may have implications for efficient transgene delivery and the development of potent cancer treatment strategies using alphaviral vectors and 5-FU.publishersversionPeer reviewe

    Future perspectives in melanoma research: meeting report from the "Melanoma Bridge";: Napoli, December 3rd-6th 2014.

    Get PDF
    The fourth "Melanoma Bridge Meeting" took place in Naples, December 3-6th, 2014. The four topics discussed at this meeting were: Molecular and Immunological Advances, Combination Therapies, News in Immunotherapy, and Tumor Microenvironment and Biomarkers. Until recently systemic therapy for metastatic melanoma patients was ineffective, but recent advances in tumor biology and immunology have led to the development of new targeted and immunotherapeutic agents that prolong progression-free survival (PFS) and overall survival (OS). New therapies, such as mitogen-activated protein kinase (MAPK) pathway inhibitors as well as other signaling pathway inhibitors, are being tested in patients with metastatic melanoma either as monotherapy or in combination, and all have yielded promising results. These include inhibitors of receptor tyrosine kinases (BRAF, MEK, and VEGFR), the phosphatidylinositol 3 kinase (PI3K) pathway [PI3K, AKT, mammalian target of rapamycin (mTOR)], activators of apoptotic pathway, and the cell cycle inhibitors (CDK4/6). Various locoregional interventions including radiotherapy and surgery are still valid approaches in treatment of advanced melanoma that can be integrated with novel therapies. Intrinsic, adaptive and acquired resistance occur with targeted therapy such as BRAF inhibitors, where most responses are short-lived. Given that the reactivation of the MAPK pathway through several distinct mechanisms is responsible for the majority of acquired resistance, it is logical to combine BRAF inhibitors with inhibitors of targets downstream in the MAPK pathway. For example, combination of BRAF/MEK inhibitors (e.g., dabrafenib/trametinib) have been demonstrated to improve survival compared to monotherapy. Application of novel technologies such sequencing have proven useful as a tool for identification of MAPK pathway-alternative resistance mechanism and designing other combinatorial therapies such as those between BRAF and AKT inhibitors. Improved survival rates have also been observed with immune-targeted therapy for patients with metastatic melanoma. Immune-modulating antibodies came to the forefront with anti-CTLA-4, programmed cell death-1 (PD-1) and PD-1 ligand 1 (PD-L1) pathway blocking antibodies that result in durable responses in a subset of melanoma patients. Agents targeting other immune inhibitory (e.g., Tim-3) or immune stimulating (e.g., CD137) receptors and other approaches such as adoptive cell transfer demonstrate clinical benefit in patients with melanoma as well. These agents are being studied in combination with targeted therapies in attempt to produce longer-term responses than those more typically seen with targeted therapy. Other combinations with cytotoxic chemotherapy and inhibitors of angiogenesis are changing the evolving landscape of therapeutic options and are being evaluated to prevent or delay resistance and to further improve survival rates for this patient population. This meeting's specific focus was on advances in combination of targeted therapy and immunotherapy. Both combination targeted therapy approaches and different immunotherapies were discussed. Similarly to the previous meetings, the importance of biomarkers for clinical application as markers for diagnosis, prognosis and prediction of treatment response was an integral part of the meeting. The overall emphasis on biomarkers supports novel concepts toward integrating biomarkers into contemporary clinical management of patients with melanoma across the entire spectrum of disease stage. Translation of the knowledge gained from the biology of tumor microenvironment across different tumors represents a bridge to impact on prognosis and response to therapy in melanoma

    Future perspectives in melanoma research: meeting report from the “Melanoma Bridge”: Napoli, December 3rd–6th 2014

    Full text link

    Virotherapy, gene transfer and immunostimulatory monoclonal antibodies

    Get PDF
    Fulltext embargoed for: 6 months post date of publicationMalignant cells are susceptible to viral infection and consequent cell death. Virus-induced cell death is endowed with features that are known to stimulate innate and adaptive immune responses. Thus danger signals emitted by cells succumbing to viral infection as well as viral nucleic acids are detected by specific receptors, and tumor cell antigens can be routed to professional antigen-presenting cells. The anticancer immune response triggered by viral infection is frequently insufficient to eradicate malignancy but may be further amplified. For this purpose, transgenes encoding cytokines as co-stimulatory molecules can be genetically engineered into viral vectors. Alternatively, or in addition, it is possible to use monoclonal antibodies that either block inhibitory receptors of immune effector cells, or act as agonists for co-stimulatory receptors. Combined strategies are based on the ignition of a local immune response at the malignant site plus systemic immune boosting. We have recently reported examples of this approach involving the Vaccinia virus or Semliki Forest virus, interleukin-12 and anti-CD137 monoclonal antibodies

    Intratumoral immunotherapy with XCL1 and sFlt3L encoded in recombinant Semliki Forest Virus-derived vectors fosters dendritic cell-mediated T cell cross-priming

    No full text
    Multiple lines of evidence indicate a critical role for antigen cross-presentation by conventional BATF3-dependent type 1 classical dendritic cells (cDC1) in CD8-mediated antitumor immunity. Flt3L and XCL1 respectively constitute a key growth/differentiation factor and a potent and specific chemoattractant for cDC1. To exploit their antitumor functions in local immunotherapy, we prepared Semliki Forest Virus (SFV)-based vectors encoding XCL1 and soluble Flt3L (sFlt3L). These vectors readily conferred transgene expression to tumor cells in culture and when engrafted as subcutaneous mouse tumor models. In syngeneic mice, intratumoral injection of SFV-XCL1-sFlt3L (SFV-XF) delayed progression of MC38- and B16-derived tumors. Therapeutic activity was observed and exerted additive effects in combination with anti-PD-1, anti-CD137, or CTLA-4 immunostimulatory monoclonal antibodies. Therapeutic effects were abolished by CD8β T cell depletion and were enhanced by CD4 T cell depletion, but not by Treg pre-depletion with anti-CD25 mAb. Antitumor effects were also abolished in BATF3- and IFNAR-deficient mice. In B16-OVA tumors, SFV-XF increased the number of infiltrating CD8 T cells, including those recognizing OVA. Consistently, following intratumoral SFV-XF treatment courses, we observed increased BATF3-dependent cDC1 among B16-OVA tumor-infiltrating leukocytes. Such an intratumoral increase was not seen in MC38-derived tumors, but both resident and migratory cDC1 were boosted in SFV-XF-treated MC38 tumor-draining lymph nodes. In conclusion, viral gene transfer of sFlt3L and XCL1 is feasible, safe, and biologically active in mice, exerting antitumor effects that can be potentiated by CD4 T cell depletion
    corecore