6 research outputs found

    D.A.N.G.E.R Disaster Prevention: videojuego educativo para la gestión de emergencias en Unity 3D: IA, agentes inteligentes y generación procedural

    Full text link
    [ES] En este TFG se propone realizar un videojuego de simulación social y estrategia en Unity 3D para ordenador con una posterior portabilidad a dispositivos móviles. Este TFG será compartido con Adrián Sanchez Lavarias donde cada uno desarrollaremos distintos aspectos de aspectos del juego. Habrá aspectos que serán compartidos como, por ejemplo, la selección de assets, análisis de mercado, investigación en materias de seguridad y el documento de diseño del videojuego (GDD). En este juego encontraremos personajes con distintas personalidades a los que deberemos darles órdenes con el fin de salvar al mayor número posible de la emergencia en la que se ven envueltos. Las acciones del jugador tendrán repercusiones en el entorno y en los NPCs, que actúan como agentes a su entorno, que también se encuentra en constante cambio. Para ello inteligentes reactivos, serán capaces de percibir amenazas, obstáculos y otros NPCs y desplazarse por el mismo de forma autónoma interactuando con ellos según su personalidad, además de ajustar sus capacidades y emociones en tiempo real. Cada personaje presentará una personalidad y un conjunto de características físicas que proporcionarán al juego de un mayor realismo. Los niveles podrán ser generados tanto proceduralmente como a voluntad del jugador lo que fomentará la rejugabilidad del título y que se creen situaciones únicas. Mi compañero se encargará de las interfaces de usuario y las distintas pantallas, una base de datos que recoja las estadísticas de los jugadores y el diseño de una página web donde se encontrará información de como actuar en caso de emergencia, así como una guía de juego. El objetivo de este juego es usarlo como herramienta para utilizar estas tecnologías que se encuentran a la orden del día al mismo tiempo que se aprende acerca de las medidas y comportamientos que deben tomarse en caso de emergencia en un entorno interactivo, seguro y divertido.[EN] In this TFG it is proposed to make a social simulation and strategy video game in Unity 3D for the computer with subsequent portability to mobile devices. This TFG will be shared with Adrián Sanchez Lavarias where each one of us will develop different aspects of the game. There will be aspects that will be shared such as, for example, the asset selection, market analysis, research on security matters and the video game design document (GDD). In this game we will find characters with different personalities to whom we will have to give orders in order to save as many as possible from the emergency in which they are involved. The player's actions will have an impact on the environment and the NPCs, who act as reactive agents to their environment, which is also constantly changing. To do this, the NPC¿s will be able to detect threats, obstacles and other NPCs and move through it autonomously, interacting with them according to their personality, in addition to adjusting their abilities and emotions in real time. Each character will present a personality and a set of physical characteristics that will give the game more realism. The levels can be generated both procedurally and at the player's will, which will promote the replayability of the title and create unique situations. My colleague will be in charge of the user interfaces and the different screens, a database that collects the statistics of the players and the design of a web page where you will find information on how to act in case of emergency, as well as a game guide. The objective of this game is to use it as a tool to use these technologies that are the order of the day while learning about the measures and behaviors to be taken in an emergency in an interactive, safe and fun environment.Querol Ballester, P. (2021). D.A.N.G.E.R Disaster Prevention: videojuego educativo para la gestión de emergencias en Unity 3D: IA, agentes inteligentes y generación procedural. Universitat Politècnica de València. http://hdl.handle.net/10251/174568TFG

    Measurement of the 136Xe two-neutrino double- β -decay half-life via direct background subtraction in NEXT

    Get PDF
    NEXT Collaboration: et al.We report a measurement of the half-life of the 136Xe two-neutrino double-β decay performed with a novel direct-background-subtraction technique. The analysis relies on the data collected with the NEXT-White detector operated with 136Xe-enriched and 136Xe-depleted xenon, as well as on the topology of double-electron tracks. With a fiducial mass of only 3.5 kg of Xe, a half-life of 2.34+0.80−0.46(stat)+0.30−0.17(sys)×1021yr is derived from the background-subtracted energy spectrum. The presented technique demonstrates the feasibility of unique background-model-independent neutrinoless double-β-decay searches.The NEXT Collaboration acknowledges support from the following agencies and institutions: the European Research Council (ERC) under Grant No.951281-BOLD; the European Union’s Framework Programme for Research and Innovation Horizon 2020 (2014–2020) under Grant No. 957202-HIDDEN; the MCIN/AEI/10.13039/501100011033 of Spain and ERDF “Away of making Europe” under Grant No.RTI2018-095979, the Severo Ochoa Program Grant No.CEX2018-000867-S, and the María de Maeztu Program Grant No.MDM-2016-0692; the Generalitat Valenciana of Spain under Grants No. PROMETEO/2021/087 and No. CIDEGENT/2019/049; the Portuguese FCT under Project No. UID/FIS/04559/2020 to fund the activities of LIB Phys-UC; the Pazy Foundation (Israel) under Grants No.877040 and No.877041; the U.S. Department of Energy under Contracts No.DE-AC02-06CH11357(Argonne National Laboratory),No. DE-AC02-07CH11359 (Fermi National Accelerator Laboratory), No. DE-FG02-13ER42020 (TexasA&M),No.DE-SC0019054 (Texas Arlington), and No.DE-SC0019223 (Arlington,TX); the U.S. National Science Foundation under Grant No. CHE2004111;and the Robert A. Welch Foundation under Grant No.Y-203120200401. D.G.D. acknowledges support from the Ramón y Cajal program (Spain) under Contract No. RYC-2015-18820.Peer reviewe

    The dynamics of ions on phased radio-frequency carpets in high pressure gases and application for barium tagging in xenon gas time projection chambers

    Get PDF
    NEXT Collaboration: et al.Radio-frequency (RF) carpets with ultra-fine pitches are examined for ion transport in gases at atmospheric pressures and above. We develop new analytic and computational methods for modeling RF ion transport at densities where dynamics are strongly influenced by buffer gas collisions. An analytic description of levitating and sweeping forces from phased arrays is obtained, then thermodynamic and kinetic principles are used to calculate ion loss rates in the presence of collisions. This methodology is validated against detailed microscopic SIMION simulations. We then explore a parameter space of special interest for neutrinoless double beta decay experiments: transport of barium ions in xenon at pressures from 1 to 10 bar. Our computations account for molecular ion formation and pressure dependent mobility as well as finite temperature effects. We discuss the challenges associated with achieving suitable operating conditions, which lie beyond the capabilities of existing devices, using presently available or near-future manufacturing techniques.The University of Texas at Arlington NEXT group is supported by the Department of Energy, USA under Early Career Award number DE-SC0019054 (BJPJ), by Department of Energy, USA Award DE-SC0019223 (DRN), the National Science Foundation, USA under award number NSF CHE 2004111 (FWF), and the Robert A Welch Foundation, Y-2031-20200401 (FWF). The NEXT Collaboration acknowledges support from the following agencies and institutions: the European Research Council (ERC) under the Advanced Grant 339787-NEXT; the European Union’s Framework Programme for Research and Innovation Horizon 2020 (2014–2020) under the Grant Agreements No. 674896, 690575 and 740055; the Ministerio de Economía Competitividad and the Ministerio de Ciencia, Innovación Universidades of Spain under grants FIS2014-53371-C04, RTI2018-095979, the Severo Ochoa Program grants SEV-2014-0398 and CEX2018-000867-S, and the María de Maeztu Program MDM-2016-0692; from Fundacion Bancaria la Caixa (ID 100010434), grant code LCF/BQ/PI19/11690012; the Generalitat Valenciana of Spain under grants PROMETEO/2016/120 and SEJI/2017/011; the Portuguese FCT under project PTDC/FIS-NUC/2525/2014 and under projects UID/FIS/04559/2020 to fund the activities of LIBPhys-UC; the Pazy Foundation (Israel) under grants 877040 and 877041; the US Department of Energy under contracts number DE-AC02-06CH11357 (Argonne National Laboratory, USA), DE-AC02-07CH11359 (Fermi National Accelerator Laboratory), DE-FG02-13ER42020 (Texas A&M). DGD acknowledges support from the Ramón y Cajal program (Spain) under contract number RYC-2015-18820. JM-A acknowledges support from Fundación Bancaria la Caixa (ID 100010434), grant code LCF/BQ/PI19/11690012, and from the Plan GenT program of the Generalitat Valenciana , grant code CIDEGENT/2019/049.Peer reviewe
    corecore