15 research outputs found

    Integrated multi-trophic aquaculture systems: energy transfers and food web organization in coastal earthen ponds

    Get PDF
    Three Ecopath models were built to reproduce 3 experimental treatments carried out in earthen ponds located in Olhao, southern Portugal, to understand the energy transferred and the ecosystem state in integrated multi-trophic aquaculture (IMTA). These earthen ponds behave as simplified ecosystems or mesocosms, with well-defined borders, where the relationships between trophic groups can be described through ecosystem modeling. Different combinations of species were produced in these ponds, corresponding to the 3 treatments: (1) fish, oysters and macroalgae (FOM); (2) fish and oysters (FO); and (3) fish and macroalgae (FM). The managed species were meagre Argyrosomus regius, white seabream Diplodus sargus, flathead grey mullet Mugil cephalus, Japanese oyster Crassostrea gigas and sea lettuce Ultra spp. The results showed that the total amount of energy throughput was 15 to 17 times higher when compared with an equivalent naturalized system. The high biomass and low recycling indicated an immature system with low resilience and low stability that demands high rates of water renewal and aeration to maintain good water-quality levels for finfish production. The addition of oysters and macroalgae in the FOM treatment appeared to improve the water quality, since oysters controlled the excess of phytoplankton produced in the ponds by ingesting a fair amount of the phytoplankton, while the macroalgae helped in the absorption of excess nutrients and created a habitat for periphyton and associated macroinvertebrates. Some ecosystem attributes of the FOM ponds approached the values of the naturalized model, suggesting a possible path towards more sustainable aquaculture.COFASP/0003/2015 Interreg Atlantic Area project INTEGRATE EAPA_232/2016 project DIVERSIAQUA Mar2020 16-02-01-FMP-0066 UID/Multi/04326/2019/UID/Multi/04326/2020info:eu-repo/semantics/publishedVersio

    Methodology for assessing the individual role of fish, oyster, phytoplankton and macroalgae in the ecology of integrated production in earthen ponds

    Get PDF
    Production costs in extensive and semi-intensive fish culture in earthen ponds are often too high to offer sustainable economic activity due to the low productivity of these systems. The right combination of commercial finfish species with inorganic (primary producers) and organic extractive (bivalves) species in Integrated MultiTrophic Aquaculture (IMTA) create a balanced system with higher profitability and risk reduction. To achieve this, it is crucial to understand the role of each functional groups within the system what we did by comparing three different IMTA production three different IMTA production treatments with distinct combinations of trophic levels: •fish, filter feeders, phytoplankton and macroalgae,•fish, filter feeders and phytoplankton•fish, phytoplankton and macroalgae Each treatment was carried out in two similar ponds under semi-intensive conditions and flow through system, in a total of 6 earthen ponds of 500 m2 surface and depth of 1.5 m. Results showed that the presence of oysters in the ponds enhanced water quality by decreasing turbidity and by controlling phytoplankton which led to regulation of dissolved oxygen levels. The enhanced water quality in these systems lead to improved fish performance and higher biomass production contributing to greater profitability. The combination of fish, oyster, phytoplankton and macroalgae was particularly good providing much more fish supply compared with the other two treatments. •Oysters enhanced water quality in the ponds by decreasing turbidity and controlling phytoplankton which regulated the dissolved oxygen levels.•The enhanced water quality in systems with oysters improve fish performance resulting in higher biomass production and greater profitability.•The combination of fish, oyster, phytoplankton and macroalgae was particularly good providing much more fish supply compared with the other two treatments.Funding Agency Fundacao para a Ciencia e a Tecnologia (FCT) COFASP/0003/2015 SFRH/BD/118601/2016 Project DIVERSIAQUA Mar2020 16-02-01-FMP-0066 project Algared+ Poctep 0055_ALGARED_PLUS_5_E UID/Multi/04326/2019info:eu-repo/semantics/publishedVersio

    Thermoreversible (Ionic-Liquid-Based) Aqueous Biphasic Systems

    Get PDF
    The ability to induce reversible phase transitions between homogeneous solutions and biphasic liquid-liquid systems, at pre-defined and suitable operating temperatures, is of crucial relevance in the design of separation processes. Ionic-liquid-based aqueous biphasic systems (IL-based ABS) have demonstrated superior performance as alternative extraction platforms, and their thermoreversible behaviour is here disclosed by the use of protic ILs. The applicability of the temperature-induced phase switching is further demonstrated with the complete extraction of two value-added proteins, achieved in a single-step. It is shown that these temperature-induced mono(bi)phasic systems are significantly more versatile than classical liquid-liquid systems which are constrained by their critical temperatures. IL-based ABS allow to work in a wide range of temperatures and compositions which can be tailored to fit the requirements of a given separation process

    Rearing fish larvae for extensive and semi-intensive aquaculture - the “natural” mesocosms system

    No full text
    Non-intensive aquaculture systems are rapidly generating interest due to increased awareness of consumers about environmental issues, including those associated with coastal areas; eutrophication as a result of intensive aquaculture production is seen as a problem, there is concern about animal welfare issues in fish rearing, and food safety is of course a major concern

    Understanding the individual role of fish, oyster, phytoplankton and macroalgae in the ecology of integrated production in earthen ponds

    No full text
    In order to demonstrate that IMTA can be profitable and a good alternative to regular semi-intensive fish mariculture production in earthen ponds three different production treatments with distinct combinations of trophic levels were designed: (i) a combination of fish, filter feeders, phytoplankton and macroalgae, (ii) fish, filter feeders and phytoplankton and (iii) fish, phytoplankton and macroalgae, to evaluate the role of each trophic level within an Integrated Multi-Trophic Aquaculture system (IMTA). Each treatment was carried out under semi-intensive conditions with two replicates, in a total of 6 earthen ponds of 500 m(2) surface and depth of 1.5 m. The results showed that fish, oyster, phytoplankton and macroalgae integrated aquaculture is a healthy sustainable production system for mariculture in earthen ponds, providing much more fish supply compared with the other two treatments. Ponds with filter feeders had significantly lower turbidity (Nephelometric Formazin unit (FNU) of 13 in the morning and 17 in the afternoon) when compared to ponds without filter feeders (16 FNU in the morning and 20 FNU in the afternoon) with increased light penetration throughout water column (61 and 55 cm transparency in ponds with filter feeders compared to 51 cm in ponds without filter feeders) and consequently higher photosynthetic activity with significantly higher dissolved oxygen (5.4 mg L in the morning and 6.7 mg L-1 in the afternoon in ponds with filter feeders compared to 5.3 mg L-1 in the morning and 6.4 mg L-1 in the afternoon in ponds without filter feeders) and carbon sequestration (0.50 and 0.53 mg L-1 8 h(-1) in ponds with filter feeders and 0.43 mg L-1 8 h(-1) in ponds without filter feeders). In the fish, filter feeder, phytoplanton and macroalgae IMTA treatment, phytoplankton played a crucial role because they increased DO levels, removed the excess of nutrients from animal excretion, and was used as food by the filter feeders. Almost as important is the presence of filter feeders since they control the density of the microalgae and particulate matter in the ponds contributing to a more constant level of DO and higher transparency of the water column. The increased transparency and pond fertilization by oyster excretion, resulted in higher proliferation of phytoplankton (chlorophyll a concentrations of 16.5 mu gL(-1) and 20.2 mu g L-1 in ponds with filter feeder and 13.3 mu g L-1 in ponds without filter feeder) with benefits not only for filter feeders themselves but also for the macroalgae. At the end there was higher water quality and higher savings (14% day(-1)) in the energy costs for pond aeration. Meagre, white seabream and flathead grey mullet enhance their performance in IMTA systems with the presence of filter feeders with food conversion rates (FCR) of 1.52 when compared with 2.46 in the regular semi-intensive system composed by fish, phytoplankton and macroalgae. Meagre grew significantly more in IMTA systems with controlled macroalgae while white seabream and flathead grey mullet enhance their performance in the presence of macroalgae. The results show that the fish, oyster, phytoplankton and macroalgae integrated production in earthen ponds is an improved system compared to the regular semi-intensive fish production. The enhanced water quality in these systems leads to improved fish performance and higher biomass production, and to reduction in the energy power used, contributing to greater profitability.Fundacao para a Ciencia e TecnologiaPortuguese Foundation for Science and Technology [COFASP/0003/2015]project DIVERSIAQUA [Mar2020 16-02-01-FMP-0066]project Algared+ [Poctep 0055_ALGARED_PLUS_5_E]Fundacao para a Ciencia e Tecnologia, PortugalPortuguese Foundation for Science and Technology [SFRH/BD/118601/2016][UID/Multi/04326/2019

    Acoustic detection of bubbles in a pond covered by the seagrass Cymodocea nodosa

    No full text
    This paper describes two experiments conducted in a pond covered by the seagrass Cymodocea nodosa at the Aquaculture Research Station of the Portuguese Institute for the Sea and Atmosphere in Olhao, Portugal, aiming at developing acoustic methods to assess oxygen production of seagrasses. The first experiment was carried out in July covering two days, when warm water and high photosynthetic rates give a high probability of oxygen supersaturation in water. The second experiment was carried out in late October, covering a period of 10 days, when seagrass productivity was expected to be lower than in July given the low irradiance and photoperiod. In the July experiment the high attenuation of low frequency pulses and broadband water pump noise (< 20 kHz) in the afternoon is ascribed to bubbles formation during oxygen supersaturation conditions. This hypothesis is coherent with the significant increase of the backscattering level, as measured by an acoustic backscatter system operating at 0.5, 1, 2, 4 MHz. Both, the attenuation of low frequency signals and backscattering level are correlated with oxygen supersaturation in water as measured by an optode. In the October experiment, when only water pump noise was acquired, the acoustic variability that can be related to photosynthetic activity was much weaker, nevertheless the attenuation shows a diurnal pattern correlated with the dissolved oxygen. The results suggest a significant release of oxygen as bubbles during photosynthesis, and therefore the potential contribution of acoustic methods to assess oxygen production of seagrass ecosystems.Foundation for Science and Technology (FCT) [PTDC/EEIPRO/2598/2014

    Composition and bioaccessibility of elements in green seaweeds from fish pond aquaculture

    No full text
    Supplementary data to this article can be found online at https:// doi.org/10.1016/j.foodres.2017.11.015.The elemental composition of five species of green seaweeds (Chaetomorpha linum, Rhizoclonium riparium, Ulva intestinalis, Ulva lactuca, Ulva prolifera) grown in fish pond aquaculture systems were studied. The elemental bioaccessibility in these species was also investigated through the application of an innovative in vitro digestive model of the human gastrointestinal tract. It was observed that R. riparium had the highest levels of Mn, Sr, Cd, Sn, and I and that U. lactuca had the highest Ni and Cu concentrations. The daily amounts of dried green seaweed required for achieving specific dietary intakes were calculated, namely: 7 g of dried U. lactuca (for meeting Cu Recommended Daily Allowance, RDA); 173 g of dried U. lactuca (Zn RDA); 78 g of dried C. linum (Se RDA); 41 g of dried C. linum (Mo RDA); and 0.5 g of dried R. riparium (I Dietary Reference Intake, DRI). Concerning elemental bioaccessibility, Mn and Cu had the highest values, always above 50%, I values were in the lower range, between 14 and 31%. The elemental bioaccessibility range of R. riparium (31–100%) was higher than the ranges for other species, particularly C. linum (0–56%). The bioaccessibility results entailed higher quantities of dried seaweed for reaching dietary intakes: 10 g of dried U. lactuca (Cu RDA); 290 g of dried R. riparium (Zn RDA); and 2 g of dried R. riparium (I DRI). Accordingly, R. riparium is a very rich I source. This study showed the importance of taking into account bioaccessibility results in estimating dietary intakes.This work was supported by the following Post Doctoral Grants: Ref.: SFRH/BPD/102689/2014 (“Fundação para a Ciência e a Tecnologia”, FCT) for the author Carlos Cardoso; Ref.: SFRH/BPD/64951/2009 (FCT) and DIVERSIAQUA (MAR2020) for the author Cláudia Afonso; and the CCMAR/Multi/04326/2013 grant for the authors Andrea Ripol and João Varela. Moreover, the experimental work was funded by the project DIVERSIAQUA (MAR2020, Ref.: 16-02-01-FEAM-66).info:eu-repo/semantics/publishedVersio

    Design and validation of a finite element model of the aponeurotic and free Achilles tendon

    No full text
    The Achilles tendon (AT) is a common injury site. Ruptures are usually located in the free tendon but may cross the myotendinous junction into the aponeurotic region. Considering the possibility of aponeurotic region involvement in AT ruptures, a novel three dimensional (3D) finite element (FE) model that includes both the aponeurotic and free AT regions and features subtendon twisting and sliding was developed. It was hypothesized that the model would be able to predict in vivo data collected from the literature, thus being considered valid, and that model outputs would be most sensitive to subtendon twist configurations. The 3D model was constructed using magnetic resonance images. The model was divided into soleus and gastrocnemius subtendons. In addition to a frictionless contact condition, the interaction between subtendons was modeled using two contact formulations: sliding with anisotropic friction and no sliding. Loads were applied on the tendon's most proximal cross-section and anterior surface, with magnitudes estimated from in vivo studies. Model outputs were compared with experimental data regarding 3D deformation, transverse plane rotation, and nodal displacements in the free tendon. The FE model adequately simulated the free tendon behavior regarding longitudinal strain, cross-section area variation, transverse plane rotation, and sagittal nodal displacements, provided that subtendon sliding was allowed. The frictionless model exhibited noticeable medial transverse sliding of the soleus subtendon, which was present to a much lesser degree in the anisotropic friction model. Model outputs were most sensitive to variations in subtendon twist and dispersion of the collagen fiber orientations. Clinical Significance: This Achilles tendon finite element model, validated using in vivo experimental data, may be used to study its mechanical behavior, injury mechanisms, and rupture risk factors
    corecore