561 research outputs found

    Review: Object vision in a structured world

    Get PDF
    In natural vision, objects appear at typical locations, both with respect to visual space (e.g., an airplane in the upper part of a scene) and other objects (e.g., a lamp above a table). Recent studies have shown that object vision is strongly adapted to such positional regularities. In this review we synthesize these developments, highlighting that adaptations to positional regularities facilitate object detection and recognition, and sharpen the representations of objects in visual cortex. These effects are pervasive across various types of high-level content. We posit that adaptations to real-world structure collectively support optimal usage of limited cortical processing resources. Taking positional regularities into account will thus be essential for understanding efficient object vision in the real world

    Deformation of the Fermi surface in the extended Hubbard model

    Full text link
    The deformation of the Fermi surface induced by Coulomb interactions is investigated in the t-t'-Hubbard model. The interplay of the local U and extended V interactions is analyzed. It is found that exchange interactions V enhance small anisotropies producing deformations of the Fermi surface which break the point group symmetry of the square lattice at the Van Hove filling. This Pomeranchuck instability competes with ferromagnetism and is suppressed at a critical value of U(V). The interaction V renormalizes the t' parameter to smaller values what favours nesting. It also induces changes on the topology of the Fermi surface which can go from hole to electron-like what may explain recent ARPES experiments.Comment: 5 pages, 4 ps figure

    Coordinated Container Migration and Base Station Handover in Mobile Edge Computing

    Full text link
    Offloading computationally intensive tasks from mobile users (MUs) to a virtualized environment such as containers on a nearby edge server, can significantly reduce processing time and hence end-to-end (E2E) delay. However, when users are mobile, such containers need to be migrated to other edge servers located closer to the MUs to keep the E2E delay low. Meanwhile, the mobility of MUs necessitates handover among base stations in order to keep the wireless connections between MUs and base stations uninterrupted. In this paper, we address the joint problem of container migration and base-station handover by proposing a coordinated migration-handover mechanism, with the objective of achieving low E2E delay and minimizing service interruption. The mechanism determines the optimal destinations and time for migration and handover in a coordinated manner, along with a delta checkpoint technique that we propose. We implement a testbed edge computing system with our proposed coordinated migration-handover mechanism, and evaluate the performance using real-world applications implemented with Docker container (an industry-standard). The results demonstrate that our mechanism achieves 30%-40% lower service downtime and 13%-22% lower E2E delay as compared to other mechanisms. Our work is instrumental in offering smooth user experience in mobile edge computing.Comment: 6 pages. Accepted for presentation at the IEEE Global Communications Conference (Globecom), Taipei, Taiwan, Dec. 202

    Cortisol/Cortisone Levels and Quality of Life in Individuals with Pulmonary Arterial Hypertension (PAH).

    Get PDF
    Individuals with pulmonary arterial hypertension experience debilitating symptoms and psychological distress which may influence their cortisol regulation. We describe associations between diurnal salivary cortisol/cortisone levels and quality of life in adults with pulmonary arterial hypertension. Findings suggest potential clinical utility of cortisol/cortisone assessment as applied to a pulmonary arterial hypertension population

    Object Vision in a Structured World

    Get PDF
    In natural vision, objects appear at typical locations, both with respect to visual space (e.g., an airplane in the upper part of a scene) and other objects (e.g., a lamp above a table). Recent studies have shown that object vision is strongly adapted to such positional regularities. In this review we synthesize these developments, highlighting that adaptations to positional regularities facilitate object detection and recognition, and sharpen the representations of objects in visual cortex. These effects are pervasive across various types of high-level content. We posit that adaptations to real-world structure collectively support optimal usage of limited cortical processing resources. Taking positional regularities into account will thus be essential for understanding efficient object vision in the real world

    Strong polarization-induced reduction of addition energies in single-molecule nanojunctions

    Full text link
    We address polarization-induced renormalization of molecular levels in solid-state based single-molecule transistors and focus on an organic conjugate molecule where a surprisingly large reduction of the addition energy has been observed. We have developed a scheme that combines a self-consistent solution of a quantum chemical calculation with a realistic description of the screening environment. Our results indeed show a large reduction, and we explain this to be a consequence of both (a) a reduction of the electrostatic molecular charging energy and (b) polarization induced level shifts of the HOMO and LUMO levels. Finally, we calculate the charge stability diagram and explain at a qualitative level general features observed experimentally.Comment: 9 pages, 5 figure
    corecore