149 research outputs found

    Structuring functional groups of aquatic insects along the resistance/resilience axis when facing water flow changes

    Get PDF
    Understanding how differences in intensity and frequency of hydrological disturbances affect the resistance and resilience of aquatic organisms is key to manage aquatic systems in a fast-changing world. Some aquatic insects have strategies that improve the permanence (resistance), while others use strategies that favor recolonization (resilience). Therefore, we carried out a manipulative experiment to understand the influence of functional characteristics of aquatic insects in their permanence and recolonization against hydrological disturbances in streams in the biodiversity hotspot of the Cerrado of Brazil. We placed 200 artificial substrates in five streams and submitted them to changing water flow regimes that differed both in frequency and intensity, and we observed the response of the aquatic community for 39 days. We used a hierarchical Bayesian approach to estimate the probabilities of permanence and recolonization of each life strategy group (nine groups). We observed that the most intense changes in the water flow tended to affect the permanence of almost all groups, but the intensity of this effect reduced over time. On the other hand, less frequent disturbances, regardless of intensity, tended to reduce the permanence of most groups of aquatic insects over time. The different effects of disturbance intensity may have been related to a greater recolonization capacity of some groups. The results we present are worrisome in a scenario of reduced riparian vegetation around streams and with the expectation of precipitation becoming more concentrated in shorter periods of time due to climate change in the Cerrado hotspot, reducing the occurrence of many groups of aquatic insects in their habitat, particularly those with traits associated with resistance against hydrological disturbance

    Data standardization of plant-pollinator interactions

    Get PDF
    Background: Animal pollination is an important ecosystem function and service, ensuring both the integrity of natural systems and human well-being. Although many knowledge shortfalls remain, some high-quality data sets on biological interactions are now available. The development and adoption of standards for biodiversity data and metadata has promoted great advances in biological data sharing and aggregation, supporting large-scale studies and science-based public policies. However, these standards are currently not suitable to fully support interaction data sharing. Results: Here we present a vocabulary of terms and a data model for sharing plant–pollinator interactions data based on the Darwin Core standard. The vocabulary introduces 48 new terms targeting several aspects of plant–pollinator interactions and can be used to capture information from different approaches and scales. Additionally, we provide solutions for data serialization using RDF, XML, and DwC-Archives and recommendations of existing controlled vocabularies for some of the terms. Our contribution supports open access to standardized data on plant–pollinator interactions. Conclusions: The adoption of the vocabulary would facilitate data sharing to support studies ranging from the spatial and temporal distribution of interactions to the taxonomic, phenological, functional, and phylogenetic aspects of plant–pollinator interactions. We expect to fill data and knowledge gaps, thus further enabling scientific research on the ecology and evolution of plant–pollinator communities, biodiversity conservation, ecosystem services, and the development of public policies. The proposed data model is flexible and can be adapted for sharing other types of interactions data by developing discipline-specific vocabularies of terms.Fil: Salim, José A. Universidade de Sao Paulo; BrasilFil: Saraiva, Antonio M.. Universidade de Sao Paulo; BrasilFil: Zermoglio, Paula Florencia. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Patagonia Norte. Instituto de Investigaciones En Recursos Naturales, Agroecologia y Desarrollo Rural. - Universidad Nacional de Rio Negro. Instituto de Investigaciones En Recursos Naturales, Agroecologia y Desarrollo Rural.; ArgentinaFil: Agostini, Kayna. Universidade Federal do São Carlos; BrasilFil: Wolowski, Marina. Universidade Federal de Alfenas; BrasilFil: Drucker, Debora P.. Empresa Brasileira de Pesquisa Agropecuaria (embrapa);Fil: Soares, Filipi M.. Universidade de Sao Paulo; BrasilFil: Bergamo, Pedro J.. Jardim Botânico do Rio de Janeiro; BrasilFil: Varassin, Isabela G.. Universidade Federal do Paraná; BrasilFil: Freitas, Leandro. Jardim Botânico do Rio de Janeiro; BrasilFil: Maués, Márcia M.. Empresa Brasileira de Pesquisa Agropecuaria (embrapa);Fil: Rech, Andre R.. Universidade Federal dos Vales do Jequitinhonha e Mucuri; BrasilFil: Veiga, Allan K.. Universidade de Sao Paulo; BrasilFil: Acosta, Andre L.. Instituto Tecnológico Vale; BrasilFil: Araujo, Andréa C. Universidade Federal do Mato Grosso do Sul; BrasilFil: Nogueira, Anselmo. Universidad Federal do Abc; BrasilFil: Blochtein, Betina. Pontificia Universidade Católica do Rio Grande do Sul; BrasilFil: Freitas, Breno M.. Universidade Estadual do Ceará; BrasilFil: Albertini, Bruno C.. Universidade de Sao Paulo; BrasilFil: Maia Silva, Camila. Universidade Federal Rural Do Semi Arido; BrasilFil: Nunes, Carlos E. P.. University of Stirling; BrasilFil: Pires, Carmen S. S.. Empresa Brasileira de Pesquisa Agropecuaria (embrapa);Fil: Dos Santos, Charles F.. Pontificia Universidade Católica do Rio Grande do Sul; BrasilFil: Queiroz, Elisa P.. Universidade de Sao Paulo; BrasilFil: Cartolano, Etienne A.. Universidade de Sao Paulo; BrasilFil: de Oliveira, Favízia F. Universidade Federal da Bahia; BrasilFil: Amorim, Felipe W.. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Fontúrbel, Francisco E.. Pontificia Universidad Católica de Valparaíso; ChileFil: da Silva, Gleycon V.. Ministério da Ciência, Tecnologia, Inovações. Instituto Nacional de Pesquisas da Amazônia; BrasilFil: Consolaro, Hélder. Universidade Federal de Catalão; Brasi

    Data standardization of plant–pollinator interactions

    Get PDF
    Background: Animal pollination is an important ecosystem function and service, ensuring both the integrity of natural systems and human well-being. Although many knowledge shortfalls remain, some high-quality data sets on biological interactions are now available. The development and adoption of standards for biodiversity data and metadata has promoted great advances in biological data sharing and aggregation, supporting large-scale studies and science-based public policies. However, these standards are currently not suitable to fully support interaction data sharing. Results: Here we present a vocabulary of terms and a data model for sharing plant–pollinator interactions data based on the Darwin Core standard. The vocabulary introduces 48 new terms targeting several aspects of plant–pollinator interactions and can be used to capture information from different approaches and scales. Additionally, we provide solutions for data serialization using RDF, XML, and DwC-Archives and recommendations of existing controlled vocabularies for some of the terms. Our contribution supports open access to standardized data on plant–pollinator interactions. Conclusions: The adoption of the vocabulary would facilitate data sharing to support studies ranging from the spatial and temporal distribution of interactions to the taxonomic, phenological, functional, and phylogenetic aspects of plant–pollinator interactions. We expect to fill data and knowledge gaps, thus further enabling scientific research on the ecology and evolution of plant–pollinator communities, biodiversity conservation, ecosystem services, and the development of public policies. The proposed data model is flexible and can be adapted for sharing other types of interactions data by developing discipline-specific vocabularies of termsinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Tropical field stations yield high conservation return on investment

    Get PDF
    Conservation funding is currently limited; cost‐effective conservation solutions are essential. We suggest that the thousands of field stations worldwide can play key roles at the frontline of biodiversity conservation and have high intrinsic value. We assessed field stations’ conservation return on investment and explored the impact of COVID‐19. We surveyed leaders of field stations across tropical regions that host primate research; 157 field stations in 56 countries responded. Respondents reported improved habitat quality and reduced hunting rates at over 80% of field stations and lower operational costs per km 2 than protected areas, yet half of those surveyed have less funding now than in 2019. Spatial analyses support field station presence as reducing deforestation. These “earth observatories” provide a high return on investment; we advocate for increased support of field station programs and for governments to support their vital conservation efforts by investing accordingly
    corecore