31 research outputs found

    Model-Derived Dispersal Pathways from Multiple Source Populations Explain Variability of Invertebrate Larval Supply

    Get PDF
    Background: Predicting the spatial and temporal patterns of marine larval dispersal and supply is a challenging task due to the small size of the larvae and the variability of oceanographic processes. Addressing this problem requires the use of novel approaches capable of capturing the inherent variability in the mechanisms involved. Methodology/Principal Findings: In this study we test whether dispersal and connectivity patterns generated from a biophysical model of larval dispersal of the crab Carcinus maenas, along the west coast of the Iberian Peninsula, can predict the highly variable daily pattern of wind-driven larval supply to an estuary observed during the peak reproductive season (March–June) in 2006 and 2007. Cross-correlations between observed and predicted supply were significant (p,0.05) and strong, ranging from 0.34 to 0.81 at time lags of 26 to+5 d. Importantly, the model correctly predicted observed cross-shelf distributions (Pearson r = 0.82, p,0.001, and r = 0.79, p,0.01, in 2006 and 2007) and indicated that all supply events were comprised of larvae that had been retained within the inner shelf; larvae transported to the outer shelf and beyond never recruited. Estimated average dispersal distances ranged from 57 to 198 km and were only marginally affected by mortality. Conclusions/Significance: The high degree of predicted demographic connectivity over relatively large geographic scales is consistent with the lack of genetic structuring in C. maenas along the Iberian Peninsula. These findings indicate that the dynamic nature of larval dispersal can be captured by mechanistic biophysical models, which can be used to provid

    Mesenchymal tumours of the mediastinum—part II

    Get PDF

    Building the sugarcane genome for biotechnology and identifying evolutionary trends

    Get PDF

    The effect of low level laser therapy in different wavelengths in the treatment of oral mucositis-proposal for extra-oral implementation

    No full text
    The oral mucositis is the most frequent acute oral complication resulting from antineoplastic treatment and may worsen the clinical condition of the patient and interfere with his/her quality of life. This study aimed to comparatively evaluate, from a clinical point of view, the effect of Laser Therapy lambda 660 nm (wavelength of the red Laser) and lambda 830 nm (wavelength of the infrared Laser), at extra-oral points, in remission of severity of oral mucositis and pain associated with it in pediatric oncological patients undergoing chemotherapy with the anticancer drug methotrexate, noting which of the two wavelength is the most appropriate to this new technique. The sample consisted of 13 patients placed at random in each group and subjected to sessions of Low Level Laser Therapy, at pre-determined extra-oral points for five consecutive days, starting at the beginning of the observation of mucositis injuries. It became possible to note that from the group of patients in the group of Laser lambda 830 nm (n = 6; 46.15%), four (n = 4; 66.67%) of these patients had remission of injuries to grade 0 (WHO), and as for pain, five patients (n = 5; 83.33%) showed no painful symptoms for mucositis injuries. In the Laser lambda 660 nm group (n = 7; 53.85%), only two patients (n = 2; 28.57%) achieved a regression of lesions to grade 0 (WHO), while four patients (n = 4; 57.14%) had no pain. So, the extra-oral application of Laser Therapy was effective in treating injuries of oral mucositis in the patients treated; and Laser Therapy in the infrared spectrum (lambda 830 nm) was more effective in the treatment of oral mucositis injuries compared to the red spectrum (lambda 660 nm), which can be explained by the greater power of penetration of infrared rays, acting in a more expressive way in deeper places.1991912191
    corecore