53 research outputs found

    Draft genome sequence of multitrait plant growth-promoting Bacillus sp. strain RZ2MS9

    Get PDF
    Plant growth-promoting rhizobacteria (PGPR) are able to colonize plant rhizosphere and improve plant growth through several direct and indirect mechanisms (1), which makes them good candidates for use as biofertilizers. Members of the genus Bacillus are often reported as PGPR because of multiple traits that promote plant growth, for instance, the ability to fix nitrogen (2), produce hormones like indole acetic-acid (IAA), solubilize phosphate, and suppress pathogen growth (3). The rhizobacterium Bacillus sp. strain RZ2MS9 was isolated in Brazil from the rhizosphere of guarana, a typical tropical plant, and was identified as Bacillus thuringiensis by multi-locus sequence type (MLST) analysis. On in vitro tests, this strain was able to produce 67.40 _g IAA/ml, solubilize phosphate, produce siderophore, and fix nitrogen. The strain promoted the growth of maize (Zea mays) and soybean (Glycine max) in an experiment conducted in greenhouse conditions, suggesting that it can be used in a broad range of hosts, which is a greatly desired feature in biofertilizer development (B. D. Batista, submitted for publication). The draft genome sequence of the strain presented here will be useful to explore its genomic features as a multitrait PGPR

    Draft genome sequence of Burkholderia ambifaria RZ2MS16, a plant growth-promoting rhizobacterium isolated from guarana, a tropical plant

    Get PDF
    Burkholderia ambifaria strain RZ2MS16 was isolated from the rhizosphere of Amazon guarana in Brazil. This bacterium exhibits a remarkable capacity to promote the growth of corn and soybean. Here, we report the draft genome sequence of RZ2MS16 and some genes related to multiple traits involved in plant growth promotion

    Screening of endoglucanase-producing bacteria in the saline rhizosphere of Rhizophora mangle.

    Get PDF
    Abstract: In screening the culturable endoglucanase-producing bacteria in the rhizosphere of Rhizophora mangle, we found a prevalence of genera Bacillus and Paenibacillus. These bacteria revealed different activities in endoglucolysis and biofilm formation when exposed to specific NaCl concentrations, indicating modulated growth under natural variations in mangrove salinity

    Isolation and enzyme bioprospection of endopytic bacteria associated with plants of Brazilian mangrove ecosystem

    Get PDF
    The mangrove ecosystem is a coastal tropical biome located in the transition zone between land and sea that is characterized by periodic flooding, which confers unique and specific environmental conditions on this biome. In these ecosystems, the vegetation is dominated by a particular group of plant species that provide a unique environment harboring diverse groups of microorganisms, including the endophytic microorganisms that are the focus of this study. Because of their intimate association with plants, endophytic microorganisms could be explored for biotechnologically significant products, such as enzymes, proteins, antibiotics and others. Here, we isolated endophytic microorganisms from two mangrove species, Rhizophora mangle and Avicennia nitida, that are found in streams in two mangrove systems in Bertioga and Cananéia, Brazil. Bacillus was the most frequently isolated genus, comprising 42% of the species isolated from Cananéia and 28% of the species from Bertioga. However, other common endophytic genera such as Pantoea, Curtobacterium and Enterobacter were also found. After identifying the isolates, the bacterial communities were evaluated for enzyme production. Protease activity was observed in 75% of the isolates, while endoglucanase activity occurred in 62% of the isolates. Bacillus showed the highest activity rates for amylase and esterase and endoglucanase. To our knowledge, this is the first reported diversity analysis performed on endophytic bacteria obtained from the branches of mangrove trees and the first overview of the specific enzymes produced by different bacterial genera. This work contributes to our knowledge of the microorganisms and enzymes present in mangrove ecosystems

    Eucalyptus growth promotion by endophytic Bacillus spp

    Get PDF
    Clonal eucalyptus plantings have increased in recent years; however, some clones with high production characteristics have vegetative propagation problems because of weak root and aerial development. Endophytic microorganisms live inside healthy plants without causing any damage to their hosts and can be beneficial, acting as plant growth promoters. We isolated endophytic bacteria from eucalyptus plants and evaluated their potential in plant growth promotion of clonal plantlets of Eucalyptus urophylla x E. grandis, known as the hybrid, E. urograndis. Eighteen isolates of E. urograndis, clone 4622, were tested for plant growth promotion using the same clone. These isolates were also evaluated for indole acetic acid production and their potential for nitrogen fixation and phosphate solubilization. The isolates were identified by partial sequencing of 16S rRNA. Bacillus subtilis was the most prevalent species. Several Bacillus species, including B. licheniformis and B. subtilis, were found for the first time as endophytes of eucalyptus. Bacillus sp strain EUCB 10 significantly increased the growth of the root and aerial parts of eucalyptus plantlets under greenhouse conditions, during the summer and winter seasons.CNPqCNP

    Beneficial plant-associated microorganisms from Semiarid regions and seasonally dry environments: a review.

    Get PDF
    Semiarid regions are apparently low biodiversity environments; however, these environments may host a phylogenetically diverse microbial community a asociated with plants. Their microbial inhabitants are often recruited to withstand stressful settings and improve plant growth under harsh conditions. Thus, plant-associated microorganisms isolated from semiarid and seasonally dry environments will be detailed in the present review, focusing on plant growth promotion potential and the microbial ability to alleviate plant abiotic stress. Initially, we explored the role of microbes from dry environments around the world, and then, we focused on seasonally dry Brazilian biomes, the Caatinga and the Cerrado. Cultivable bacteria from semiarid and seasonally dry environments have demonstrated great plant growth promotion traits such as plant hormone production, mobilization of insoluble nutrients, and mechanisms related to plant abiotic stress alleviation. Several of these isolates were able to improve plant growth under stressful conditions commonly present in typical semiarid regions, such as high salinity and drought. Additionally, we highlight the potential of plants highly adapted to seasonal climates from the Caatinga and Cerrado biomes as a suitable pool of microbial inoculants to maintain plant growth under abiotic stress conditions. In general, we point out the potential for the exploitation of new microbial inoculants from plants growing in dry environments to ensure a sustainable increase in agricultural productivity in a future climate change scenario.Article 55322

    Epicoccum nigrum P16, a Sugarcane Endophyte, Produces Antifungal Compounds and Induces Root Growth

    Get PDF
    Background: Sugarcane is one of the most important crops in Brazil, mainly because of its use in biofuel production. Recent studies have sought to determine the role of sugarcane endophytic microbial diversity in microorganism-plant interactions, and their biotechnological potential. Epicoccum nigrum is an important sugarcane endophytic fungus that has been associated with the biological control of phytopathogens, and the production of secondary metabolites. In spite of several studies carried out to define the better conditions to use E. nigrum in different crops, little is known about the establishment of an endophytic interaction, and its potential effects on plant physiology. Methodology/Principal Findings: We report an approach based on inoculation followed by re-isolation, molecular monitoring, microscopic analysis, plant growth responses to fungal colonization, and antimicrobial activity tests to study the basic aspects of the E. nigrum endophytic interaction with sugarcane, and the effects of colonization on plant physiology. The results indicate that E. nigrum was capable of increasing the root system biomass and producing compounds that inhibit the in vitro growth of sugarcane pathogens Fusarium verticillioides, Colletotrichum falcatum, Ceratocystis paradoxa, and Xanthomomas albilineans. In addition, E. nigrum preferentially colonizes the sugarcane surface and, occasionally, the endophytic environment. Conclusions/Significance: Our work demonstrates that E. nigrum has great potential for sugarcane crop application because it is capable of increasing the root system biomass and controlling pathogens. The study of the basic aspects of the interaction of E. nigrum with sugarcane demonstrated the facultative endophytism of E. nigrum and its preference for the phylloplane environment, which should be considered in future studies of biocontrol using this species. In addition, this work contributes to the knowledge of the interaction of this ubiquitous endophyte with the host plant, and also to a better use of microbial endophytes in agriculture.State of Sao Paulo Research Foundation (FAPESP)FAPESP (State of Sao Paulo Research Foundation) [02/14143-3, 10/08286-2]Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq
    corecore