1,929 research outputs found

    Lepton Flavor Violating Radiative Decays in EW-Scale νR\nu_R Model: An Update

    Get PDF
    We perform an updated analysis for the one-loop induced lepton flavor violating radiative decays liljγl_i \to l_j \gamma in an extended mirror model. Mixing effects of the neutrinos and charged leptons constructed with a horizontal A4A_4 symmetry are also taken into account. Current experimental limit and projected sensitivity on the branching ratio of μeγ\mu \to e \gamma are used to constrain the parameter space of the model. Calculations of two related observables, the electric and magnetic dipole moments of the leptons, are included. Implications concerning the possible detection of mirror leptons at the LHC and the ILC are also discussed.Comment: 9 figures, 36 single-side pages. Updated email addresses and referenc

    New genotyping method discovers sustained nosocomial Pseudomonas aeruginosa outbreak in an intensive care burn unit.

    Get PDF
    Pseudomonas aeruginosa is a leading cause of healthcare-associated infections in the intensive care unit (ICU). To investigate an unexplained increase in the incidence of P. aeruginosa recovered from clinical samples in the ICU over a two-year period. After unsuccessful epidemiological investigation by conventional tools, P. aeruginosa clinical isolates of all patients hospitalized between January 2010 and July 2012 were typed by a novel double-locus sequence typing (DLST) method and compared to environmental isolates recovered during the investigation period. In total, 509 clinical isolates from 218 patients and 91 environmental isolates were typed. Thirty-five different genotypic clusters were found in 154 out of 218 patients (71%). The largest cluster, DLST 1-18, included 23 patients who were mostly hospitalized during overlapping periods in the burn unit. Genotype DLST 1-18 was also recovered from floor traps, shower trolleys and the shower mattress in the hydrotherapy rooms, suggesting environmental contamination of the burn unit as the source of the outbreak. After implementation of appropriate infection control measures, this genotype was recovered only once in a clinical sample from a burned patient and twice in the environment, but never thereafter during a 12-month follow-up period. The use of a novel DLST method allowed the genotyping of a large number of clinical and environmental isolates, leading to the identification of the environmental source of a large unrecognized outbreak in the burn unit. Eradication of the outbreak was confirmed after implementation of a continuous epidemiological surveillance of P. aeruginosa clones in the ICU

    Synergistic Interaction Between Phage Therapy and Antibiotics Clears Pseudomonas Aeruginosa Infection in Endocarditis and Reduces Virulence.

    Get PDF
    Increasing antibiotic resistance warrants therapeutic alternatives. Here we investigated the efficacy of bacteriophage-therapy (phage) alone or combined with antibiotics against experimental endocarditis (EE) due to Pseudomonas aeruginosa, an archetype of difficult-to-treat infection. In vitro fibrin clots and rats with aortic EE were treated with an antipseudomonas phage cocktail alone or combined with ciprofloxacin. Phage pharmacology, therapeutic efficacy, and resistance were determined. In vitro, single-dose phage therapy killed 7 log colony-forming units (CFUs)/g of fibrin clots in 6 hours. Phage-resistant mutants regrew after 24 hours but were prevented by combination with ciprofloxacin (2.5 × minimum inhibitory concentration). In vivo, single-dose phage therapy killed 2.5 log CFUs/g of vegetations in 6 hours (P < .001 vs untreated controls) and was comparable with ciprofloxacin monotherapy. Moreover, phage/ciprofloxacin combinations were highly synergistic, killing >6 log CFUs/g of vegetations in 6 hours and successfully treating 64% (n = 7/11) of rats. Phage-resistant mutants emerged in vitro but not in vivo, most likely because resistant mutations affected bacterial surface determinants important for infectivity (eg, the pilT and galU genes involved in pilus motility and LPS formation). Single-dose phage therapy was active against P. aeruginosa EE and highly synergistic with ciprofloxacin. Phage-resistant mutants had impaired infectivity. Phage-therapy alone or combined with antibiotics merits further clinical consideration

    Study of Fusion Boundary Microstructure and Local Mismatch of SA508/Alloy 52 Dissimilar Metal Weld with Buttering

    Get PDF
    Funding Information: The authors wish to express their gratitude for the funding and support from Ringhals AB, OKG AB, Teollisuuden Voima Oyj and VTT Technical Research centre of Finland within the FEMMA (Forum for the Effect of Thermal Ageing and Microstructure on Mechanical and EAC Behavior of Ni-based Alloy Dissimilar Metal Welds) research project. The authors also thank NKS for funding the NKS-FEMMA (AFT/NKS-R(22)134/4) project. The authors would like to thank P. Arffman, J. Lydman, A. Nurmela and L. Sirkiä for the experimental contributions. The authors would like to thank U. Ehrnstén, B. Forssgren, H. Reinvall and H. Hänninen for suggestions and discussions. Publisher Copyright: © 2023 The Author(s)A SA508/Alloy 52 dissimilar metal weld (DMW) mock-up with double-sided Alloy 52 butterings, which is fully representative of Ringhals pressurizer surge nozzle DMW repair solution, was studied. The microstructure, crystal structure, elemental diffusion, carbide formation and macro-, micro- and nano-hardness of the SA508/nickel-base Alloy 52 buttering fusion boundary (FB) were investigated. Three types of FBs were analyzed, i.e., narrow FB (∼80–85% of whole FB), tempered martensitic transition region (∼15%) and wide partially mixed zone (∼1–2%). The different FB types were induced by the local heat flow and respective elementary diffusion, which significantly influence the local hardness mismatch across the DMW interface and the local brittle fracture behavior.Peer reviewe

    Measurement of pancreatic stone protein in the identification and management of sepsis.

    Get PDF
    Sepsis is a life-threatening syndrome characterized by a dysregulated host response to an infection resulting in multiple organ dysfunctions. Early diagnosis and management of sepsis is key to improve patient outcome but remains challenging. Despite extensive research, only few biomarkers have so far proven to be helpful in the diagnosis of sepsis. A novel protein biomarker, the pancreatic stone protein (PSP), is showing great promises. Several lines of evidences suggest that PSP has a higher diagnostic performance for the identification of sepsis than procalcitonin and C-reactive protein, and a strong prognostic value to predict unfavorable outcome at admission to intensive care unit. This review summarizes the current knowledge on the molecular mechanisms of PSP function and the clinical evidences available to highlight the relevance of this protein in the diagnosis and prognosis of sepsis

    Far-infrared absorption in parallel quantum wires with weak tunneling

    Full text link
    We study collective and single-particle intersubband excitations in a system of quantum wires coupled via weak tunneling. For an isolated wire with parabolic confinement, the Kohn's theorem guarantees that the absorption spectrum represents a single sharp peak centered at the frequency given by the bare confining potential. We show that the effect of weak tunneling between two parabolic quantum wires is twofold: (i) additional peaks corresponding to single-particle excitations appear in the absorption spectrum, and (ii) the main absorption peak acquires a depolarization shift. We also show that the interplay between tunneling and weak perpendicular magnetic field drastically enhances the dispersion of single-particle excitations. The latter leads to a strong damping of the intersubband plasmon for magnetic fields exceeding a critical value.Comment: 18 pages + 6 postcript figure

    The impact of penicillinase on cefamandole treatment and prophylaxis of experimental endocarditis due to methicillin-resistant Staphylococcus aureus.

    Get PDF
    Beta-lactams active against methicillin-resistant Staphylococcus aureus (MRSA) must resist penicillinase hydrolysis and bind penicillin-binding protein 2A (PBP 2A). Cefamandole might share these properties. When tested against 2 isogenic pairs of MRSA that produced or did not produce penicillinase, MICs of cefamandole (8-32 mg/L) were not affected by penicillinase, and cefamandole had a > or =40 times greater PBP 2A affinity than did methicillin. In rats, constant serum levels of 100 mg/L cefamandole successfully treated experimental endocarditis due to penicillinase-negative isolates but failed against penicillinase-producing organisms. This suggested that penicillinase produced in infected vegetations might hydrolyze the drug. Indeed, cefamandole was slowly degraded by penicillinase in vitro. Moreover, its efficacy was restored by combination with sulbactam in vivo. Cefamandole also uniformly prevented MRSA endocarditis in prophylaxis experiments, a setting in which bacteria were not yet clustered in the vegetations. Thus, while cefamandole treatment was limited by penicillinase, the drug was still successful for prophylaxis of experimental MRSA endocarditis

    Lamellar to Rod Eutectic Transition in the Hypereutectic Nickel- Aluminum Alloy

    Get PDF
    Directional solidification experiments were carried out on the hypereutectic Ni-25 at.% Al alloy to examine the effect of growth velocity on the eutectic microstructure. The growth velocity was varied from 1 to 20 μm/s at a constant temperature gradient of 10.0 K/mm. The microstructural observations of unidirectionally solidified samples show that the lamellar eutectic growth was observed in the sample solidified at a constant velocity of 1 μm/s and the rod eutectic growth at velocities higher than 10 μm/s. A microstructural transition from lamellar to rod eutectics was achieved at the intermediate velocity. The lamellar to rod eutectic transition was shown to result from the compositional change due to the presence of strong convection in the melt. The undercooling-spacing curves showed that the average eutectic spacings for the lamellar and the rod structures were 1.6 times larger than that in the minimum undercooling for a given velocity
    corecore