1,073 research outputs found

    Frequency-Domain Measurement of the Spin Imbalance Lifetime in Superconductors

    Get PDF
    We have measured the lifetime of spin imbalances in the quasiparticle population of a superconductor (τs\tau_s) in the frequency domain. A time-dependent spin imbalance is created by injecting spin-polarised electrons at finite excitation frequencies into a thin-film mesoscopic superconductor (Al) in an in-plane magnetic field (in the Pauli limit). The time-averaged value of the spin imbalance signal as a function of excitation frequency, fRFf_{RF} shows a cut-off at fRF≈1/(2πτs)f_{RF} \approx 1/(2\pi\tau_s). The spin imbalance lifetime is relatively constant in the accessible ranges of temperatures, with perhaps a slight increase with increasing magnetic field. Taking into account sample thickness effects, τs\tau_s is consistent with previous measurements and of the order of the electron-electron scattering time τee\tau_{ee}. Our data are qualitatively well-described by a theoretical model taking into account all quasiparticle tunnelling processes from a normal metal into a superconductor.Comment: Includes Supplementary Informatio

    Cyanobacterial Harmful Algal Blooms: Chapter 2: A Synopsis of Research Needs Identified at the Interagency, International Symposium on Cyanobacterial Harmful Algal Blooms (ISOC-HAB)

    Get PDF
    Evidence indicates that the incidence of cyanobacterial harmful algal blooms (CHABs) is increasing in spatial extent and temporal frequency worldwide. Cyanobacterial blooms produce highly potent toxins and huge, noxious biomasses in surface waters used for recreation, commerce, and as drinking water sources. The Interagency, International Symposium on Cyanobacterial Harmful Algal Blooms (ISOC-HAB) characterized the state of the science and identified research needed to address the risks posed by CHABs to human health and ecosystem sustainability. This chapter provides a synopsis of CHAB research needs that were identified by workgroups that addressed charges in major topic areas. The research and infrastructure needed are listed under nine categories: 1) Analytical Methods; 2) CHAB Occurrence; 3) CHAB Causes; 4) Human Health; 5) Ecosystem Sustainability; 6) CHAB Prevention; 7) CHAB Control and Mitigation; 8) Risk Assessment and; 9) Infrastructure. A number of important issues must be addressed to successfully confront the health, ecologic, and economic challenges presented by CHABs. Near-term research goals include the development of field-ready tests to identify and quantify cells and toxins, the production of certified reference standards and bulk toxins, formal assessments of CHAB incidence, improved understanding of toxin effects, therapeutic interventions, ecologically benign means to prevent and control CHABs, supplemental drinking water treatment techniques, and the development of risk assessment and management strategies. Long-term goals include the assimilation of CHAB databases into emerging U.S. and international observing systems, the development of quantitative models to predict CHAB occurrence, effects, and management outcomes, and economic analyses of CAHB costs and management benefits. Accomplishing further infrastructure development and freshwater HAB research is discussed in relationship to the Harmful Algal Blooms and Hypoxia Research and Control Act and existing HAB research programs. A sound scientific basis, the integration of CHAB infrastructure with that of the marine HAB community, and a systems approach to risk assessment and management will minimize the impact of this growing challenge to society

    Cyanobacterial Harmful Algal Blooms: Chapter 2: A Synopsis of Research Needs Identified at the Interagency, International Symposium on Cyanobacterial Harmful Algal Blooms (ISOC-HAB)

    Get PDF
    Evidence indicates that the incidence of cyanobacterial harmful algal blooms (CHABs) is increasing in spatial extent and temporal frequency worldwide. Cyanobacterial blooms produce highly potent toxins and huge, noxious biomasses in surface waters used for recreation, commerce, and as drinking water sources. The Interagency, International Symposium on Cyanobacterial Harmful Algal Blooms (ISOC-HAB) characterized the state of the science and identified research needed to address the risks posed by CHABs to human health and ecosystem sustainability. This chapter provides a synopsis of CHAB research needs that were identified by workgroups that addressed charges in major topic areas. The research and infrastructure needed are listed under nine categories: 1) Analytical Methods; 2) CHAB Occurrence; 3) CHAB Causes; 4) Human Health; 5) Ecosystem Sustainability; 6) CHAB Prevention; 7) CHAB Control and Mitigation; 8) Risk Assessment and; 9) Infrastructure. A number of important issues must be addressed to successfully confront the health, ecologic, and economic challenges presented by CHABs. Near-term research goals include the development of field-ready tests to identify and quantify cells and toxins, the production of certified reference standards and bulk toxins, formal assessments of CHAB incidence, improved understanding of toxin effects, therapeutic interventions, ecologically benign means to prevent and control CHABs, supplemental drinking water treatment techniques, and the development of risk assessment and management strategies. Long-term goals include the assimilation of CHAB databases into emerging U.S. and international observing systems, the development of quantitative models to predict CHAB occurrence, effects, and management outcomes, and economic analyses of CAHB costs and management benefits. Accomplishing further infrastructure development and freshwater HAB research is discussed in relationship to the Harmful Algal Blooms and Hypoxia Research and Control Act and existing HAB research programs. A sound scientific basis, the integration of CHAB infrastructure with that of the marine HAB community, and a systems approach to risk assessment and management will minimize the impact of this growing challenge to society

    Transport Properties of Carbon Nanotube C60_{60} Peapods

    Full text link
    We measure the conductance of carbon nanotube peapods from room temperature down to 250mK. Our devices show both metallic and semiconducting behavior at room temperature. At the lowest temperatures, we observe single electron effects. Our results suggest that the encapsulated C60_{60} molecules do not introduce substantial backscattering for electrons near the Fermi level. This is remarkable given that previous tunneling spectroscopy measurements show that encapsulated C60_{60} strongly modifies the electronic structure of a nanotube away from the Fermi level.Comment: 9 pages, 4 figures. This is one of two manuscripts replacing the one orginally submitted as arXiv:cond-mat/0606258. The other one is arXiv:0704.3641 [cond-mat

    Superconductor spintronics: Modeling spin and charge accumulation in out-of-equilibrium NS junctions subjected to Zeeman magnetic fields

    Get PDF
    We study the spin and charge accumulation in junctions between a superconductor and a ferromagnet or a normal metal in the presence of a Zeeman magnetic field, when the junction is taken out of equilibrium by applying a voltage bias. We write down the most general form for the spin and charge current in such junctions, taking into account all spin-resolved possible tunneling processes. We make use of these forms to calculate the spin accumulation in NS junctions subjected to a DC bias, and to an AC bias, sinusoidal or rectangular. We observe that in the limit of negligeable changes on the superconducting gap, the NS dynamical conductance is insensitive to spin imbalance. Therefore to probe the spin accumulation in the superconductor, one needs to separate the injection and detection point, i. e. the electrical spin detection must be non-local. We address also the effect of the spin accumulation induced in the normal leads by driving a spin current and its effects on the detection of the spin accumulation in the superconductor. Finally, we investigate the out-of-equilibrium spin susceptibility of the SC, and we show that it deviates drastically from it's equilibrium value

    Cyanobacterial Harmful Algal Blooms: Chapter 1: An Overview of the Interagency, International Symposium on Cyanobacterial Harmful Algal Blooms (ISOC-HAB): Advancing the Scientific Understanding of Freshwater Harmful Algal Blooms

    Get PDF
    There is growing evidence that the spatial and temporal incidence of harmful algal blooms is increasing, posing potential risks to human health and ecosystem sustainability. Currently there are no US Federal guidelines, Water Quality Criteria and Standards, or regulations concerning the management of harmful algal blooms. Algal blooms in freshwater are predominantly cyanobacteria, some of which produce highly potent cyanotoxins. The US Congress mandated a Scientific Assessment of Freshwater Harmful Algal Blooms in the 2004 reauthorization of the Harmful Algal Blooms and Hypoxia Research and Control Act. To further the scientific understanding of freshwater harmful algal blooms, the US Environmental Protection Agency (EPA) established an interagency committee to organize the Interagency, International Symposium on Cyanobacterial Harmful Algal Blooms (ISOC-HAB). A theoretical framework to define scientific issues and a systems approach to implement the assessment and management of cyanobacterial harmful algal blooms were developed as organizing themes for the symposium. Seven major topic areas and 23 subtopics were addressed in Workgroups and platform sessions during the symposium. The primary charge given to platform presenters was to describe the state of the science in the subtopic areas, whereas the Workgroups were charged with identifying research that could be accomplished in the short- and long-term to reduce scientific uncertainties. The proceedings of the symposium, published in this monograph, are intended to inform policy determinations and the mandated Scientific Assessment by describing the scientific knowledge and areas of uncertainty concerning freshwater harmful algal blooms

    Spectroscopy of bulk and few-layer superconducting NbSe2_2 with van der Waals tunnel junctions

    Full text link
    Tunnel junctions, a well-established platform for high-resolution spectroscopy of superconductors, require defect-free insulating barriers with clean engagement to metals on both sides. Extending the range of materials accessible to tunnel junction fabrication, beyond the limited selection which allows high-quality oxide formation, requires the development of alternative fabrication techniques. Here we show that van-der-Waals (vdW) tunnel barriers, fabricated by stacking layered semiconductors on top of the transition metal dichalcogenide (TMD) superconductor NbSe2_2, sustain a stable, low noise tunneling current, and exhibit strong suppression of sub-gap tunneling. We utilize the technique to measure the spectra of bulk (20 nm) and ultrathin (3- and 4-layer) devices at 70 mK. The spectra exhibit two distinct energy gaps, the larger of which decreases monotonously with thickness and TCT_C, in agreement with BCS theory. The spectra are analyzed using a two-band model modified to account for depairing. We show that in the bulk, the smaller gap exhibits strong depairing in an in-plane magnetic field, consistent with a high Fermi velocity. In the few-layer devices, depairing of the large gap is negligible, consistent with out-of-plane spin-locking due to Ising spin-orbit coupling. Our results demonstrate the utility of vdW tunnel junctions in mapping the intricate spectral evolution of TMD superconductors over a range of magnetic fields.Comment: This submission contains the first part of arxiv:1703.07677 with the addition of spectra taken on this devices. The second part of 1703.07677 will be published separatel
    • …
    corecore