554 research outputs found

    Psychodidae (Diptera) at the Zoological Survey of India

    Get PDF

    Design of a scanning tunneling microscope for electrochemical applications

    Get PDF
    A design for a scanning tunneling microscope that is well suited for electrochemical investigations is presented. The construction of the microscope ensures that only the tunneling tip and the sample participate in electrochemical reactions. The design also allows rapid replacement of the tip or sample, and enables facile introduction of auxiliary electrodes for use in electrochemical experiments. The microscope utilizes stepper motor driven approach mechanics in order to achieve fully remote operation and to allow reproducible coarse control of tip/sample spacings for electrochemical experiments. Highly ordered pyrolytic graphite images at atomic resolution in air and aqueous solutions can be obtained with this microscope

    Atomic resolution imaging of electrode surfaces in solutions containing reversible redox species

    Get PDF
    Procedures are described for insulating metal scanning tunneling microscope (STM) tips with either glass or polymer coatings. In solutions containing 0.10 M of a reversible redox couple, Fe(CN) - 3/-46 , the faradaic limiting current to polymer coated tips was 200–500 pA and that for glass coated tips was <10 pA. For polymer insulated tips, steady-state currents of 10–100 pA were observed at tip-sample displacements less than 0.3 µm. The suppression of faradaic current achieved by these coating procedures enabled the collection of the first atomic resolution STM images of highly ordered pyrolytic graphite electrodes in contact with redox-active electrolytes. Preliminary data for the in situ electrochemical characterization of these tips are also discussed

    Atomic Force Microscope

    Get PDF
    The scanning tunneling microscope is proposed as a method to measure forces as small as 10−18 N. As one application for this concept, we introduce a new type of microscope capable of investigating surfaces of insulators on an atomic scale. The atomic force microscope is a combination of the principles of the scanning tunneling microscope and the stylus profilometer. It incorporates a probe that does not damage the surface. Our preliminary results in air demonstrate a lateral resolution of 30 ÅA and a vertical resolution less than 1 Å

    Mechanistic investigations of nanometer-scale lithography at liquid-covered graphite surfaces

    Get PDF
    Pulse-induced nanometer-scale lithography has been performed on graphite surfaces that were in contact with pure water or other organic liquids. Very reproducible control over the pit diameter was observed in aqueous solutions, and a well-defined voltage threshold (4.0±0.2 V) was also apparent. Near the threshold voltage, 7 Å diameter×2 Å high protrusions were formed, while larger initial pulse voltages resulted in pits of diameter>~20 Å

    Nanometer-scale patterning and individual current-controlled lithography using multiple scanning probes

    Get PDF
    Cataloged from PDF version of article.Scanning probe lithography(SPL) is capable of sub-30-nm-patterning resolution and nanometer-scale alignment registration, suggesting it might provide a solution to the semiconductor industry’s lithography challenges. However, SPL throughput is significantly lower than conventional lithography techniques. Low throughput most limits the widespread use of SPL for high resolution patterning applications. This article addresses the speed constraints for reliable patterning of organic resists. Electrons field emitted from a sharp probe tip are used to expose the resist. Finite tip-sample capacitance limits the bandwidth of current-controlled lithography in which the tip-sample voltage bias is varied to maintain a fixed emission current during exposure. We have introduced a capacitance compensation scheme to ensure continuous resist exposure of SAL601 polymerresist at scan speeds up to 1 mm/s. We also demonstrate parallel resist exposure with two tips, where the emission current from each tip is individually controlled. Simultaneous patterning with multiple tips may make SPL a viable technology for high resolution lithography. © 1999 American Institute of Physic

    Contact imaging in the atomic force microscope using a higher order flexural mode combined with a new sensor

    Get PDF
    Cataloged from PDF version of article.Using an atomic force microscope(AFM) with a silicon cantilever partially covered with a layer of zinc oxide (ZnO), we have imaged in the constant force mode by employing the ZnO as both a sensor and actuator. The cantilever deflection is determined by driving the ZnO at the second mechanical resonance while the tip is in contact with the sample. As the tip‐sample force varies, the mechanical boundary condition of the oscillating cantilever is altered, and the ZnO electrical admittance is changed. Constant force is obtained by offsetting the ZnO drive so that the admittance remains constant. We have also used the ZnO as an actuator and sensor for imaging in the intermittent contact mode. In both modes, images produced by using the ZnO as a sensor are compared to images acquired with a piezoresistivesensor

    Resonant harmonic response in tapping-mode atomic force microscopy

    Get PDF
    Cataloged from PDF version of article.Higher harmonics in tapping-mode atomic force microscopy offers the potential for imaging and sensing material properties at the nanoscale. The signal level at a given harmonic of the fundamental mode can be enhanced if the cantilever is designed in such a way that the frequency of one of the higher harmonics of the fundamental mode ~designated as the resonant harmonic! matches the resonant frequency of a higher-order flexural mode. Here we present an analytical approach that relates the amplitude and phase of the cantilever vibration at the frequency of the resonant harmonic to the elastic modulus of the sample. The resonant harmonic response is optimized for different samples with a proper design of the cantilever. It is found that resonant harmonics are sensitive to the stiffness of the material under investigation

    Local spectroscopy and atomic imaging of tunneling current, forces and dissipation on graphite

    Get PDF
    Theory predicts that the currents in scanning tunneling microscopy (STM) and the attractive forces measured in atomic force microscopy (AFM) are directly related. Atomic images obtained in an attractive AFM mode should therefore be redundant because they should be \emph{similar} to STM. Here, we show that while the distance dependence of current and force is similar for graphite, constant-height AFM- and STM images differ substantially depending on distance and bias voltage. We perform spectroscopy of the tunneling current, the frequency shift and the damping signal at high-symmetry lattice sites of the graphite (0001) surface. The dissipation signal is about twice as sensitive to distance as the frequency shift, explained by the Prandtl-Tomlinson model of atomic friction.Comment: 4 pages, 4 figures, accepted at Physical Review Letter

    Analysis and design of interdigital cantilever as a displacement sensor

    Get PDF
    Cataloged from PDF version of article.The interdigital ~ID! cantilever with two sets of interleaving fingers is an alternative to the conventional cantilever used in the atomic force microscope ~AFM!. In this paper we present a detailed analysis of the interdigital cantilever and its use as a sensor for the AFM. In this study, we combine finite element analysis with diffraction theory to simulate the mechanically induced optical response of the ID. This model is used to compare this system with the optical lever detector as used in conventional instruments by analyzing the ratio of signal to noise and overall performance. We find that optical detection of the cantilever motion with interdigital fingers has two advantages. When used in conjunction with arrays of cantilevers it is far easier to align. More importantly, it is immune to laser pointing noise and thermally excited mechanical vibrations and this improves the sensitivity as compared to the optical lever. © 1998 American Institute of Physics
    corecore