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Higher harmonics in tapping-mode atomic force microscopy offers the potential for imaging and sensing
material properties at the nanoscale. The signal level at a given harmonic of the fundamental mode can be
enhanced if the cantilever is designed in such a way that the frequency of one of the higher harmonics of the
fundamental modédesignated as the resonant harmpmmatches the resonant frequency of a higher-order
flexural mode. Here we present an analytical approach that relates the amplitude and phase of the cantilever
vibration at the frequency of the resonant harmonic to the elastic modulus of the sample. The resonant
harmonic response is optimized for different samples with a proper design of the cantilever. It is found that
resonant harmonics are sensitive to the stiffness of the material under investigation.
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I. INTRODUCTION it difficult to interpret the image. Recently, Rodriguez and
Garcid® proposed excitation of the first modes of the canti-
The atomic force microscopéAFM) is primarily a tool  lever to create coupled anharmonic oscillators with high sen-
for characterizing surface topography, but there is always aitivity to variations in the attractive component of the tip-
strong interest in using this technique to study the mechanisample forces that depend on the chemical composition of
cal properties of samples at the nanoscale. A method foihe sample. _ o .
probing elastic and viscoelastic surface properties will en- There is a wealth of information in the harmonics gener-
hance our ability to characterize materials, map variations ift€d when the tip periodically taps on the sample
chemical composition, and investigate the properties ofurface->*" Heretofore, this information has been hidden
nanostructures. The techniques for measuring these propdieneath the noise floor because of the rapid decay of the
ties include force modulation microscopyhe force curve ~amplitude of the harmonicé. Here we show that a simple
method® nanoindentatiod, pulsed force mod@,and ultra-  Modification of the cantilever enhances the amplitude of a
sonic force microscopy:® These techniques measure the S€lected harmonic and increases the signal-to-noise ratio to a
elastic properties either directly by indenting the surface witf&asonable level. We have learned that the amplitude of the
a force applied to the tip or indirectly by monitoring the higher harmonics can be enhanced with specially microma-
response of the cantilever with the tip in contact with thechined cantilevers altered in such a way that the third flex-
surface. The latter is more sensitive to the local stiffness ofifal mode is an exact integer multiple of the fundamental
the sample&;* but sometimes results in damage. Probingresonance frequency. Simulations show that under these
the surface with the tapping mode for the ARRef. 12 isa  conditions }he selected harmonic is very sensitive to material
more gentle procedure that largely eliminates damage to th/Operties: Hereafter, we will designate the harmonics that
sample. match the frequency of a flexural mode as resonant har-
In tapping mode the cantilever is driven at the resonanffonic. These special cantilevers enable a new imaging mode
frequency of the fundamental mode with the tip periodicaIIyWhere we r_nomtor the C_antllever deflection at t_he harmonic
tapping on the surface. A feedback loop is used to maintai§orresponding to the third flexural mode. In this paper, we
the excursion of the oscillating tip at a constant level. ThePresent a model for the response of a resonant harmonic in
variations in both amplitude and phase of the feedback signd®PPing-mode atomic force microscopy. We use this model to
reveal the surface topography. Images obtained with thgalcul_ate the amplitude and phase of resonant harmonics .for
phase signal exhibit good contrast for different materiafé. @ variety of samples and demonstrate that the harmonics
Unfortunately, multiple sources of dissipation, such as capilS€rve as a sensitive probe of material properties.
lary forces® viscoelasticity of samples, and electronic dissi-
pation, make it difficult to interpret the phase signal and
relate it to material properties. Balantekin and Atfidrave
suggested that the elastic and viscoelastic properties can be In tapping mode, the cantilever is driven at the resonant
inferred from the amplitude and phase of the cantilever mofrequency of the fundamental. When it is brought closer to
tion if the mechanical parameters of the cantilevers aréhe sample, the tip will periodically contact the sample. As
known. Their model is limited to hydrophobic surfaces sincethe tip taps on the surface, the periodic imptiseill excite
it does not account for the capillary forces between the tighe flexural modes together with the higher harmonics. The
and the sample. Stait al. have shown that the phase signal amplitude of the harmonics is determined by a variety of
is influenced by the topographical variatiosyhich makes parameters as outlined in a later section. Stark and Ffeckl
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have calculated the amplitudes of the higher harmonics b¥quation(2) describes a freely vibrating cantilever at reso-
treating the tip-sample interaction as a linear spring andance. In Eq(3) we treat the cantilever as a linear system
modeling the cantilever with a continuum mechanical sys-and the tip-sample force together with the driving force are
tem. In this paper we will follow the work of Sariét al?’  the inputs to this system. So even though the tip-sample
and model the repulsive forces with the theory of Hertzianforce is nonlinear, the total force and displacement of the
contacts and the attractive forces with the theory of Van decantilever satisfy the linear relation of EER). A similar ap-
Waals interactions. We will use continuum mechanics to anaproach is used by Starkt al,?’® who modeled tip-sample
lyze a cantilever that have been modified so that the freforces as nonlinear feedback acting on the linear system of
qguency of one of the higher flexural models matches thehe cantilever. In Eq(3), Ft represents the sum of the non-
frequency of a harmonic of the fundamental frequency. linear tip-sample forces and the driving force. Therefore, the
output of the cantilever, which is the tip displacement, will
A. Calculating the harmonics of tip-sample interaction forces ~ Satisfy the linear relation valid for a freely vibrating cantile-
ver. In this approach, all the nonlinearity in the TM-AFM
%ystem is hidden 1. By writing Eq. (3), we are not ne-
glecting the nonlinear contributions from the tip-sample in-
teraction, however we are separating the linear and nonlinear

Various aspects of the dynamics of tapping-mode atomi
force microscopyTM-AFM) have been studied in detail for
real and model systen&-**Here we will calculate the time
course of tip-sample interaction forces, and evaluate the hab'arts of the mathematical problem to the solution.
monics with the Fourier transform.

) L When we substitute Eq2) and Eg.(3) into Eg. (1) and
We are able to use the harmonic approximation to Calcuéquate the real and imaginary parts of Efj), we get the
late tip-sample interaction forces because the quality faCtoirollowing relations: ?
of the cantilevers is very high. Although tip-sample interac- '

tion contains several harmonics, it is mostly the fundamental K,Ao

harmonic at the driving frequency that affects the motion of 0 COs¢+ Fis;€056=0, 4
the cantilever, because it is at the resonance frequency. Other !

harmonics act on the tip, but the frequency response of the KA K,A,

cantilever at those frequencies is smallgro to three orders sing+F;sing= : (5
of magnitude than the response at the fundamental reso- Q Q

nance frequency. Unfortunately, this approximation cannofrhese equations relate the magnitude and phase of the fun-
be used for cantilevers immersed in liquids because the indamental harmonic of to the known parameters of the
creased damping reduces the quality factor. tapping-mode operation. When we solve these equations for

If we neglect the contribution of higher harmonics of the the magnitudeF,; and phase), we get
tip-sample interaction force on the cantilever motion, the

problem is reduced to one of calculating the motion of a K1Aq 2A, . AZ|V2
cantilever driven at its resonance frequency from both the Fis1= Q. 1- A sing+ Azl (6)
base and tip. The driving force at the base will generate a 0
free amplitude ofA,. The force at the tip is unknown and we _ i
: e @ _ [As—Agsing
are faced with the task of finding the magnitude and phase f=tan W 7
0

(relative to the phase of the cantilever mojiamterms of the
free vibration amplitude, set-point amplitude, phase of These equations relate the magnitude and phase of the fun-
cantilever motion(relative to the driving signal and the damental harmonic force to the measurable parameters of the
spring constant and quality factor of the cantilever. If we setcantilever.

the phase of the cantilever oscillation to zero, the motion of An interesting and useful parameter in TM-AFM is the
the cantilever can be written a&.e'“. We represent the tip-sample energy dissipation due to the nonconservative na-
driving force and the fundamental harmonic of the tip-ture of the interaction forces. We would like to calculate

sample force af4e'(“'" %) andF,e'(“'* 9, respectively, tip-sample energy dissipation with the sample approach as
‘ . _ we did for the calculation of the fundamental harmonic of
Frel (@ =F gl(ottd) L ellott o) (1)  the tip-sample forces. Energy dissipation per oscillation

cycle can be calculated by integrating the instantaneous

Here themn/2 phase associated with the total fofegis due ower(the product of tip velocity and tip-sample fojaaver

to the resonance of the cantilever, since on resonance t

oscillations of the cantilever follow the total force with a e cycle as
phase delay ofr/2. Balantekin and Ataldf used the phasor
representation of Eq1) and studied the dynamics of a vi- Edis= —J fts(t)y(t)dtzj Aswfssinfwt)dt. (8)
brating cantilever in noncontact. In E), F+ andF 4 can be zrle arle
written in terms of the spring constalit , quality factorQ, Herey(t) is the first derivative of the position of the tip with
free amplitudeA,, and set-point amplitud8g as follows: respect to time. Ify(t) is chosen ag\; cos(t), theny(t) is
equal to —Agw cost). fis is the tip-sample force in time
Fqa=K1Ao/Qq, (20 domain. Note that no particular interaction model is assumed
and this equation is valid for anf4s. The only approxima-
Fr=K;A/Q;. (3 tion we make is the harmonic approximation, i.e., we assume
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a pure sinusoidal tip motion. Other than multiplicative terms,Herer is the tip-sample separatioHi is the Hamaker con-
this integral is equivalent to the coefficient of gim)(in Fou-  stant,R s the tip radius, and is the typical atomic distance
rier series expansion dfg, which is equal to—F;siné.  for the tip and the surface. This force is attractive for tip-

Rewriting Eq.(8) with this replacement, we get sample separations larger theg=30"*®¢-. To account for
energy dissipation in tip-sample interaction, we used Hvo
Egic= — mAF 51 SIN 6. (9)  Vvalues for the approach and retraction of the cantilever. This

may not be the most realistic method for including the en-
In this equationF; is given by Eq.(6) and 6 is given by  ergy dissipation. However, energy dissipation plays an im-
Eq. (7). Note that for a dissipativé,sin(f) is always nega- Pportant role in the dynamics of tip motion as indicated by the
tive so that energy dissipation is a positive quantity. Insertinglysteresis in adhesion forces that is observed in the tip-
the values foiF; and 6 gives the more familiar relation for Sample interaction. For small separations, the sample is de-

the energy dissipation per oscillation cycle for a cantileverformed under the influence of repulsive forces. The sample
driven at resonance:4 indentation with a Hertzian contact is approximately

fts(d):%E\/ﬁdm, (12

K, A2
Edis:T . (10 whered is the deformation of the sample. The paramé&&
the reduced elastic modulus of the tip and is given by

This relationship has been derived earlier by considering the 2 2
- ; : : 1 1-»; 1-vj
energy loss of tip-sample interaction. That we now find the i + _ (13)
same expression based on considerations of the tip-sample E E Es
forces is an indication that our assumptions and model ar

correct. It is important to note the relation between phase ratios of the tip and the sample, respectively. We use(EL.

of the cantilever relative to the driving force and phasef ; . :
; . ; . i for tip-sampl rations larger thgny where the force i
the tip-sample interaction forces relative to the cant|lever0 tip-sample separations larger thayy ere the force Is

motion. Equation(10) relates¢ to the energy dissipation at attractive, and Eq(12) for the positive repulsive force.

the ti I tact. Becaude andA tant The tip-sample interaction model assumes that tip-sample
ne tip-sample contact. becausg andn, are constants, we energy dissipation is due to the attractive forces regardless of
find in Eq.(7) that 0 is also a measure of energy dissipation

) . sample indentation. This simplifies the calculation, which is
in the tip-sample contact. In fact, a nonzetaneans asym-

o ) . .pjustified by noting that most of the samples energy is dissi-
metric pp—sample forces n approach and retraction of the ti ated by capillary forces and hysteresis in the Van der Waals
which in turn means that tip-sample forces are nonconserv

tive ttractive force. With viscoelastic samples the energy is dis-

Equation(6) shows thafF ., depends on the mechanical sipated when the tip indents the sample. If we assume con-
. . ts1 . . stant dissipation of the tip-sample energy, the phase of the
properties of the cantilever and the motion of the cantilever b P b 9y P

Other thang, these parameters are independent of the su cantilever motiong is determined by Eq.10). Equation(6)

r . . K L
: . 0= 2~ determines the interaction forégs;. Knowing F;, we can
face properties. Sincg depends on the energy dissipation in 681 9 st

i | i EQ(10] F 50 d d i calculate the tip-sample forces for increasing depths of in-
Ip-sampli€ con apﬁsge .q.( )], Fis1 also depends on tip- dentation starting at 0 and increasing until the interaction
sample energy dissipation.

. . . force has a fundamental harmonic equal to the predetermined
In order to calculate the time course of interaction force

¢ le with K terial ties f Yalue of Fis1. In the case of multiple solutions we pick the
or a sample wi nown material properties frdry, we solution that belongs to the repulsive regime by looking at

note that the time dependence of the tip-sample forces e sign of the average tip-sample force. The higher har-

?eterr?l?hed by th? mar:(lmutr;: |nthntatl?r)td(aipth., [[nden;g- monic forces are calculated by taking the Fourier transform
ion of the sample when the tip is at its lowest position ¢ corresponding.

which is equivalent to the minimum tip-sample separation in The tip-sample interactions for hard, medium, and soft

the attractive operation regime. There are two reasons f°§amples are shown in Fig. 1. The Fourier components are
this. First, the cantilever motion remains nearly sinusoidal in L

typical tapping-mode operation when the cantilever has calculated for a cantilever with spring const&nt= 10, qual-

high-quality factor, and second, the tip-sample force dependg/ factor Q,=100, free amplitudeAo=100 nm, and set-

only on tip-sample separation and sample indentation. For oint amplitudeAs=80 nm. The reduced Young's modulus

iven depth of indentation. the time dependence of the tip: for the three samples is chosen to obtain contact durations
gam le Se aration and s:':\m le indentpation is full detepr?f 5%, 10%, and 15% of the period on the hard, medium,

‘mp eparalio sample | . y and soft samples, respectively. Attractive forces on all the
mined. With this information, an interaction model can be

used to calculate the tip-sample forces. The interaction, amples are assumed to be equal for the same amount of
P P X nergy dissipation at the contact. For the Hamaker constants

model we used for the tip-sample forces assumes a Lennar@ve used H,=10x10 2] for approach andH,=30

Jones type of distance dependence for the attractive force§< 1029 J for retraction. The parameteRsand o are chosen

as shown below, to be 10 and 0.1 nm, respectively. These values result in an
o\? 1/[/c\8
REITIRE

Ao . 1
A—ssmqs

Blere E;,v; andEg,v4 are the elastic modulus and Poisson’s

energy dissipation of approximately 30 eV per tap.
(11) According to Fig. 1, harmonics above the fifth are depen-
dent on the hardness of the sample. Since the tip-sample

HR
fts(r)zﬁ
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XX K. . .
-100— o 5 o - 20 lever at timet. F and w are the magnitude and frequency of
phase of tip position (radians)  index of the harmonic the harmonic forceY,, w,, andQ, are the mode shape,

resonance frequency, and quality factor of tite mode.

Under typical tapping-mode operating conditions, the
guality factor of the resonance of the cantilew@y is high
?typically a few hundred Therefore, a given mode will only
be excited if the frequency of the harmonic foreg,is close

force is a periodic clipped sine wave, the width, or contactto_ the resonance frequencmn, o_f th?‘t particular mode.
duration, determines the harmonic content: shorter pulseg'rlce we are interested in the tip d|splaécem_ent, wexset
will generate larger amplitudes at higher harmonics. The du= L In addition, with Eq(A3) we see thal (L) =4 for all
ration of the contact increases for softer samples. We see #f the modes. Rewriting Eq14) with these changes, we get
Fig. 1 that the first harmonic for each of the three cases has "

the same magnitude. This is because the magnitude of the yiL t)=ei‘”‘£ > 4

first harmonic is given by Eq6) and an inspection of this ' M =1 wﬁ—w2+ilen'
equation shows that the only sample-dependent parameter is .

the phasaj)’ which is a measure of energy dissipation_ AsTh|S result ShOW.S tha.tthe cantilever C.an be mOde.|ed by a
previously mentioned, tip-sample dissipation is assumed t§eries of harmonic oscillators each having an effective mass
be constant for each of the three cases in Fig. 1. Therefor&=M/4, resonance frequenay,, and quality factorQ,.

the magnitudes of the first harmonics in each of the thred he motion of the tip is a superposition of the displacement
cases are the same. These results show that the higher h@f-many harmonic oscillators. In tapping mode there are sev-

FIG. 1. (Color online Interaction forces between the tip and the
sample for three different sample&) hard, (b) medium, and(c)
soft. The amplitude of the harmonics for the three tip-sample force
is shown on the right.

(15

monics contain information on the sample stiffness. eral harmonic forces acting on the tipee Fig. 1 and the
actual displacement of the tip will be the sum of all the
B. Mechanical model for the cantilever responses at the frequencies of the harmonics.
with higher-order modes In the special case of the resonant harmonic, whgrés

. an integer multiple of the driving frequency, the response of

In order to calculate the amplitude and phase of the cane cantilever at that frequency will be dominated by the
tilever response to the harmonic forces of the tip-sample inresonance of theth flexural mode. Since one of the harmon-
teraction, we need to go beyond the simple harmonic oscilics of the tip-sample interaction forces will match the reso-
lator and model the cantilever as a continuum mechanicghgpce frequency,,, the amplitude is enhanced by the qual-
system. The motion of the cantilever is governed by thety factor of that mode. The other modes of the cantilever
Euler-Bernoulli equation. The solution of this qutéatlon for awill not be excited by this harmonic force because they are
rectangular cantilever can be found elsewheré>"In Ap-  off. resonance. Therefore, we can neglect the response of the
pendix A, we give a brief solution of the equation of motion giher modes to the resonant harmonic in ELp). The re-
for the cantilever when it is driven from its free end and Wegnonse of the cantilever at, will be
will use those results to describe the motion of the cantile-
vers that are in periodic contact with the sample. . F, Q,

The cantilever(Fig. 2 has several flexural modes of vi- y(L,t)=e"°n‘M— —. (16)
bration. With the tip-sample interaction as the driving force, n 1@y
the motion of the cantilever can be expressed as a superpprereF , is the amplitude of the resonant harmonic force, i.e.,
sition of eigenmodes. With E¢A8) the response of the can- the Fourier component shown in Fig. 1 that matches the reso-
tilever y(x,t) to an external harmonic force applied to the nance frequency of theth flexural modeM , is the effective

pointx=L (tip) is expressed as mass of thenth flexural mode, and is equal /4 for a
w0 rectangular cantilever beam. The imaginary unitappears
y(x t):eithE Yn(L)Yn(X) (n=1,2,3,..) since on resonance there ism2 phase shift between the
' M =1 05— 0’ +io/Q, e driving force and tip displacement. Rather than the mass and

(14 resonant frequency, we find it more convenient to work with
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the effective spring constants of the modes. Using the rela- 2x1o‘9
tion w?=k/m between mass, spring constant, and resonance

frequency of a harmonic oscillator, we define an effective %1-
spring constanKn=anﬁ for each flexural mode of the 3
cantilever. The effective masses of the modes of a rectangu- 3
lar cantilever are the same and one can write Eo.

Kn Wn 2

—=—. 1

K1 (0)1 a7

This equation relates the effective spring constant of a
higher-order mode to the quantitias,, w,, andK,. This
equation provides a rough estimate but it is sufficient for our
discussion of the potential of resonant harmonics for study-
ing material properties.

Phase (radians)

9 10 11
log (E)
I1l. RESULTS AND DISCUSSION
FIG. 3. (Color online Amplitude (a) and phaséb) of the reso-

Now we have a complete formulation required to calcu-nant harmonic frequency as a function of the stiffness. The ufit of
late the resonant harmonic response in tapping mode. We Pascal and the base of the logarithm is 10.
first calculate the tip-sample interaction forces and its har-
monic content as described in the previous section and theﬁ}
we calculate the displacement of the cantilever at the resq— ltiole of the fund tal f fth
nant harmonic using Eq16). Using this methodology, we eger muitiple ot the fundamental resonance frequency ot the
analyze the effects of the sample stiffness on the resonaftlever(i-e., ko=wy, o, is the resonance frequency of
harmonic. First, we calculate the resonant harmonic respon%] enth f_Ie>_<uraI mode of the cantllev)srPhase?k of & higher
as a function of reduced Young's modulEs Based on the ~narmonic is deflned_relatlve toa r(_aference signal at the same
results of these calculations, we discuss how the amplitud\sgquency as th_e higher harmonic. It we re_present. the tip
and phase response relate to sample stiffness. Second, WgPacement withA cosit), the reference signal will be
study the effects of cantilever spring constant and set-poirfoS&et). Note that fork=1, Fig and ¢, are given by Egs.
amplitude on the resonant harmonic response. Finally, w&® and(?). .
consider the harmonic number that is to be enhanced by a In Fig. 3, we p.Iot the amplltudg and phase response of a
flexural resonance. We show that appropriate selection d¢Senant harmonic on samples with varyigdor a cantile-
cantilever spring constant and harmonic number can enhand¢" With @ spring constanK,=1 N/m and quality factor
the resolution of resonant harmonic AEM. Q1:=100. The free amplitude and set-point amplitude are
For a given Young’s modulus we calculate the tip-sampleSN0Sen 10 béo=100 nm andAs= 892%”" respectively. The
interaction forcef . as described in the theory section. The Hamaker constants and,=10x10"""J for the approach
harmonic forces are calculated by taking its Fourier trans@ndH=30x10"“"J for the retraction. We use=0.1 nm
form. Becausd  is a periodic waveform, we can expand it and R=10 nm for the spacing and tip radius. These values

gher-order resonance that is specifically tuned to be an in-

into Fourier series as follows: correspond to an energy dissipation of approximately 30 eV
per tap. The resonant harmonic is 16 times the fundamental

* resonance frequency. This implies that the cantilever beam

fts(t)=kz0 a, cogkwt)+b, sinlkwt) (k=0,1,2,..), has been altered to tune the third flexural resonance fre-

quencyws to 16 times the fundamenfal(i.e., wz=16w).
(18 The quality factor of the third-order resonance is assumed to
where the frequency is the driving frequency. Coefficients be 600. According to Eq9), the effective spring constant of
a, andb, are given as the third resonance is 256 timés;. It is not necessary to
specify a fundamental resonance frequency since(Bds
w (27l independent of resonance frequency and since only the ratio
ak:;jo fiscogkat)dt, (198 of the frequencies appears in Ha7).
We see in Fig. 3 that the amplitude oscillates between
w (27l minimum and maximum values with increasing value€of
by=— j fsSin(Kwt)dt. (19b) In this range there are multiple values®that give the same
m™Jo amplitude, which complicates signal interpretation. For val-
ues of E above the last minimum, the amplitude increases
over a range of two orders of magnitude, and then saturates
F COS kot + 6) = a, cogkot) + b, sinkot). (20)  to a plateau. At the first minimum of Fig. 3, the contact time
is approximately 2.5 times the period of the 16th harmonic.
HereF g = \/ak2+ bk2 and 6y are the magnitude and phase of At the second minimum just before the plateau the contact
the kth harmonic. One of these harmonics will drive atime is 1.5 times the period of the 16th harmonic. To under-

The kth harmonic force can be written as
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stand the origin of the minima we consider E¢s93 and x10° x10°
(19b). If we assume that, has a nonzero value only during (a)
contact, the intervals of the integrations can be reduced to the =t
contact duratiori.e., pulse width off,o). If the period of the _2222,’:
kth harmonic is less than the contact duration, cosine and
sine functions of Eq(19) have both positive and negative
contributions to the integration. At a certain contact duration,
the positive and negative contributions will largely cancel,
i.e., we get an amplitude minimum. For longer contact dura-
tions, the cosine and sine functions reverse signs multiple
times, resulting in higher-order amplitude minima, as ex-
pected of Fourier transforms for periodic pulse waveforms.
The important point here is that the contact time depends on
the stiffness of the sample and the harmonic content is
mainly determined by the contact time. This means that the 7 8 9 10
harmonic amplitude is a function of the contact time. Since log (E)
the contact time is related to the sample stiffness, we have

gained a tool for monitoring the stiffness.

We now consider the origin of the phase shifts. In 8@)
we see that the coefficienég andb, correspond to symmet-
ric (even and antisymmetricodd components of the tip-
sample interaction forcé, becausea, uses the even func-
tion cosine andy uses the odd function sine. If tip-sample  For imaging we can record the amplitude or the phase of
interaction forces are equal in approach and retraction of théhe resonant harmonic while scanning the surface in tapping
tip to the surfaceb, and 6, will be 0. With energy dissipa- mode. According to the results depicted in Figs. 3 and 4, the
tion in tip-sample forces, will be nonzero and), willbe a  amplitude and phase signals are correlated with the stiffness
measure of the ratio of dissipative forcds) to conserva- of the surface in the vicinity of the tip. Therefore, an image
tive forces @y). In addition to the phase of the resonant generated by monitoring the resonant harmonic will map the
harmonic off,s, there is an additionat/2 phase delay in the elastic properties of the sample. One would prefer that the
response of the cantilever at the frequency of resonant halecal stiffness values fall in the region between the last mini-
monic because of the resonance of the cantilever at that frenum and the plateau of Fig. 3. Preliminary knowledge of the
quency. In Fig. &), we show the phase of the 16th har- nominal stiffness of the sample allows us to design a canti-
monic. We see that the phase is changing with the stiffness déver with the correct spring constant. In Figcy we see
the surface even though the energy dissipation is constant #iat softer cantilevers will have the last minimum before the
all values ofE. The phase of 16th harmonic depends on theplateau at loweE and stiff cantilevers have their last mini-
amount of energy dissipation as well as the time of dissipamum at higher values oE. It is important to note that a
tion. In our tip-sample interaction model, energy is dissipatedtantilever that is too soft will reduce the sensitivity. For ex-
just before the contact is brokeattractive forces are larger ample, according to Fig.(d) a cantilever withK;=10 N/m
in retraction, and therefore the phase of the 16th harmonids most sensitive to stiffness variations around 10 GPa while
contains information on the contact time. This produces & cantilever withk ;=1 N/m is less sensitive in that range of
change in the variation of phase Bshanges. At each am- materials. On the other hand, the cantilever with
plitude minima the phase change is faster with chang&s in =1 N/m is sensitive to variations around 1 GPa. A proper
Calculations for the case where there is no dissipation in thgalue for the spring constant is crucial for operating in the
tip-sample interaction showr phase shifts at the minima. monotonically increasing and highly sensitive region. This is
These phase shifts are smoothed by finite dissipation. not a very limiting constraint, because the monotonically in-

In Fig. 4, we compare the amplitude and phase of thecreasing region extends over almost two orders of magnitude
resonant harmonics for two different set-point amplitudesbeyond the last amplitude minimum before it reaches the
and two different cantilever spring constants. Figurés) 4 plateau(see Fig. 3 It is unlikely that the variations in a
and 4b) show the amplitude and phase responses for thgiven sample will be this large. Although we need to use soft
varying set-point amplitude cas@=60 nm and 80 nmIn  cantilevers for compliant samples and stiff cantilevers for
Figs. 4c) and 4d) we show the amplitude and phase for two hard samples, some flexibility is provided by adjusting the
values of the spring constant cask;E1 and 10 N/m.  set-point amplitude to tune the sensitivjsee Fig. 4a)].

These figures show that with a stiffer cantilever and smaller Heretofore, the resonant harmonics were assumed to be at
set-point amplitudgwith free amplitude held constanthe  the 16th harmonic of the driving frequency. Now we would
curves shift toward higheE. Both of these changes will like to discuss the case where the frequency of the resonant
increase the tip-sample force and, in turn, the contact timéarmonic is equal to other integer multiples of the fundamen-
will increase, since the depth of the indent is increased. Ital resonance frequency. We have calculated the resonant
follows that as the force increases, the sample stiffness mustarmonic response for cantilevers with their higher-order
increase to maintain the same contact time. resonant frequencies at the 8th, 16th, and 24th harmonic. The

(c) s
15 Sz
----- = =Ki=iNm ¢

1 —K1=10N/rrI|/

N

Amplitude (m)

(=]

Phase (radians)

1

FIG. 4. (Color online Amplitude and phase responses at the
resonant harmonic for a cantilever at two different set-point ampli-
tudes[(a) and (b)] and for two cantilevers with different spring
constantg(c) and(d)]. The unit ofE is Pascal and the base of the
logarithm is 10.
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x107° typical tapping-mode experiment, higher harmonics do not
o ‘ ' ‘ match the resonance frequencies of the higher-order modes.
%2‘ e oo (@) This results in relatively small amplitude at the higher har-
B | — et monic and one can neglect the effect of high-frequency vi-
U 24t AT v S brations on the tip-sample forces. However, in the case of a
E| e/ e resonant harmonic, the amplitude at that particular frequency

0 s g oo e ' . is enhanced by the resonance of the cantilever. For a more
detailed analysis one must incorporate the effects of the en-
hanced amplitude at the resonant harmonic on tip-sample
forces.

It is important to note that there is a significant reduction
in the noise floor for the frequencies near the resonant har-
monic. Since the higher-order modes have effective spring
constants much higher than the fundameisale Eq.(9)],
the vibration amplitude due to thermal noise is much smaller
at those frequencies. There is a significant reduction in other
sources of noise as well; theflhoise is reduced since the

FIG. 5. (Color onling Amplitude (a) and phaséb) responses at  signal has been moved to a higher frequency. Experimental
the resonant harmonics when the resonant harmonics are locatedratsults of Sahiret al?® show that at the 16th harmonic, the
the 8th, 16th, and 24th harmonics of the driving frequency. Thenoise floor is reduced by 30 dB as compared to the noise at
amplitude response at the 8th harmonic is much higher than ththe fundamental mode. This reduced noise floor means that
others; therefore, we divided it by 10 in order to see all the re-gyen though the amplitudes at the resonant harmonics are
sponses Clearly within one graph. The unitbfs Pascal and the re'ative'y sma”, they offer an opportunity to measure the
base of the logarithm is 10. properties of the sample surface at the nanoscale.

Phase (radians)

10 1

9
log (E)

cantilevers are assumed to all have the same spring constant IV. CONCLUSIONS

for the fundamental vibration modés;=2 N/m. We are . L
only interested in the general behavior of the resonant. W€ have presented a study of the cantilever motion in

harmonic response at different integer multiples of the funi@PPing-mode atomic force microscopy for a cantilever al-

damental. The spring constant and quality factors of thd€red in such a way that the frequency of a harmonic of the
higher-order resonances will affect the amplitude values, buundamental mode matched the resonant frequency of a
they will not change the general trend of the amplitude andrigher f_IexuraI mod.e-.. The res.uIFs sh.ow that these_ resonant
phase variations as the hardness of the surface changes. ARrmonics are sensitive to variations in the mechanical prop-
cording to Eq.(17), the spring constant of the higher-order erties of materials. Since the amplltudes'at the resonant har-
resonances of these cantilevers will be 128, 512, and 1153'0nic are enhanced and the noise floor is reduced, there is a
N/m, respectively. For all three cantilevers, the set-point ang'9nificant increase in the signal-to-noise ratio. The resonant
free amplitudes are chosen as 80 and 100 nm. The qualify2'monic response can be tuned for th_e desired application
factors of the higher-order resonances are all assumed to ¥ SEIEcting the correct value of the spring constant, the set-
equal to 600. These assumptions for the spring constants afi@int/free amplitude, and the higher harmonic. With this
quality factors for the higher orders are not necessarily realt€chnique, elastic properties of very soft samples such as
istic but they simplify calculations. In Fig. 5 we summarize Piological films and very hard samples such as semiconduc-
the results for three cases of the calculated resonant hat@r materials can be investigated with improved sensitivity.

monic response. All three amplitude responses converge to
their maximum as the hardness of the surface increases. As APPENDIX A
previously discussed in Fig. 3, the amplitude minimum oc- ) ) ) _
curs when contact duration and the period of the higher har- Here we derive the equations governing the motion of a
monic satisfy a certain ratio. Therefore, the 24th harmonid€ctangular cantilever fixed at one efizas¢ and driven by
has its first amplitude minimum at a harder surface than th&n €xternal force at the other end. The cantilever is a homo-
16th and the 16th harmonic has its first minimum at a hardeP€neous rectangular elastic beam that has a widtleightb,
surface than the 8th harmonic. This result indicates that th@"d 1engthL. The equation of motion for the flexural vibra-
24th harmonic is more sensitive to harder samples and th&°NS is given by the differential equation
8th harmonic is more sensitive to softer samples. This feature ; ; 7
guides us in our choice of harmonics. y y y _ Lot

The amplitudes of the resonant harmonics saturate at a El W+7E+pAW_F5(X L)e. (AL)
few nanometers, which is small compared to a set-point am-
plitude of 80 nm. Since the depth of the indentation is com-Here E is the elasticity modulusp is the mass density,
parable to these amplitudes, we expect that the time deper=ab®12 is the area moment of inertia, ard=ab is the
dence of tip-sample interaction forces is affected by the higheross sectiony(x,t) stands for the vertical displacement of
frequency vibrations of the resonant higher-order modes. In the cantilever at positior. F is the magnitude of the driving

4.
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force andé is the impulse function. Gamma represents thequency w,, that is determined by the dispersion relation
damping in the system. A better approximation for the dampE£ Ik*— pAw?=0. By inserting Eq.(A3) into Eq. (A1) and

ing results in a slightly more complicated equation of mo-

eliminating the exponential time dependency, we get

tion, the solution for which can be found in Ref. 26. Since

the quality factors of cantilevers in air are relatively high, the
effect of viscous damping and internal dissipation on the
mode shapes and eigen-frequencies is negligible. Then the

21 (EIk:—pAw®)P Y (X)=F8(x—L).  (A5)

gg_neral solution to EqA1) can be expressed as a SUPETPO-|n ths equation the arbitrary coefficieri®s, can be found by
sition of the natural modes of the undamped cantilever 83sing the orthogonality of the modes. That is, for any two

follows:

y(x,t>=e—‘w‘n§1 PaYn(X). (A2)

HereY,(x) is the displacement of each natural mode &nd

modes,Y ,(x) andY,(x) will satisfy the condition

fLYm(x)Yn(x)dx=L5mn. (AB6)
0

is an arbitrary coefficient that depends on the driving force!f we multiply both sides of Eq(AS) with Yr(x) and inte-

Y. (X) is given by

sin(k,L)—sinh(k,L)
cogk,L)+coshk,L)

+[cogk,x)—coshk,x)],

Yn(X)=

[sin(k,x) — sinh(k,x)]

(A3)

grate over the length of the cantilever, and using the relation
given in Eq.(A6), we get

_F Y(L)
"M wi-0’+iow,/Q,

P (A7)

wherek, is the wave number satisfying the characteristic "€ displacement of the cantilevg(x,t) can be found by

equation

cogk,L)coshk,L)+1=0 {n=1,2,.}. (A4)

For eachk, satisfying the above relation there is a corre-
sponding natural mode of the cantilever and a resonance fre-

substitutingP, andY,, into Eq. (A2). Theny(x,t) will be
given by

Feiwt *©
M 2

n=1 ®

Y(L)Yn(X)
2tiww,/Qp—w?

y(x.t)= (A8)
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