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Resonant harmonic response in tapping-mode atomic force microscopy
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Higher harmonics in tapping-mode atomic force microscopy offers the potential for imaging and sensing
material properties at the nanoscale. The signal level at a given harmonic of the fundamental mode can be
enhanced if the cantilever is designed in such a way that the frequency of one of the higher harmonics of the
fundamental mode~designated as the resonant harmonic! matches the resonant frequency of a higher-order
flexural mode. Here we present an analytical approach that relates the amplitude and phase of the cantilever
vibration at the frequency of the resonant harmonic to the elastic modulus of the sample. The resonant
harmonic response is optimized for different samples with a proper design of the cantilever. It is found that
resonant harmonics are sensitive to the stiffness of the material under investigation.
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I. INTRODUCTION

The atomic force microscope1 ~AFM! is primarily a tool
for characterizing surface topography, but there is alway
strong interest in using this technique to study the mech
cal properties of samples at the nanoscale. A method
probing elastic and viscoelastic surface properties will
hance our ability to characterize materials, map variation
chemical composition, and investigate the properties
nanostructures. The techniques for measuring these pro
ties include force modulation microscopy,2 the force curve
method,3 nanoindentation,4 pulsed force mode,5 and ultra-
sonic force microscopy.6–8 These techniques measure t
elastic properties either directly by indenting the surface w
a force applied to the tip or indirectly by monitoring th
response of the cantilever with the tip in contact with t
surface. The latter is more sensitive to the local stiffness
the samples,9–11 but sometimes results in damage. Probi
the surface with the tapping mode for the AFM~Ref. 12! is a
more gentle procedure that largely eliminates damage to
sample.

In tapping mode the cantilever is driven at the reson
frequency of the fundamental mode with the tip periodica
tapping on the surface. A feedback loop is used to main
the excursion of the oscillating tip at a constant level. T
variations in both amplitude and phase of the feedback sig
reveal the surface topography. Images obtained with
phase signal exhibit good contrast for different materials.13,14

Unfortunately, multiple sources of dissipation, such as ca
lary forces,15 viscoelasticity of samples, and electronic dis
pation, make it difficult to interpret the phase signal a
relate it to material properties. Balantekin and Atalar16 have
suggested that the elastic and viscoelastic properties ca
inferred from the amplitude and phase of the cantilever m
tion if the mechanical parameters of the cantilevers
known. Their model is limited to hydrophobic surfaces sin
it does not account for the capillary forces between the
and the sample. Starket al. have shown that the phase sign
is influenced by the topographical variations,17 which makes
0163-1829/2004/69~16!/165416~9!/$22.50 69 1654
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it difficult to interpret the image. Recently, Rodriguez a
Garcia18 proposed excitation of the first modes of the can
lever to create coupled anharmonic oscillators with high s
sitivity to variations in the attractive component of the ti
sample forces that depend on the chemical composition
the sample.

There is a wealth of information in the harmonics gen
ated when the tip periodically taps on the samp
surface.19–21 Heretofore, this information has been hidde
beneath the noise floor because of the rapid decay of
amplitude of the harmonics.22 Here we show that a simple
modification of the cantilever enhances the amplitude o
selected harmonic and increases the signal-to-noise ratio
reasonable level. We have learned that the amplitude of
higher harmonics can be enhanced with specially microm
chined cantilevers altered in such a way that the third fl
ural mode is an exact integer multiple of the fundamen
resonance frequency.23 Simulations show that under thes
conditions the selected harmonic is very sensitive to mate
properties.24 Hereafter, we will designate the harmonics th
match the frequency of a flexural mode as resonant h
monic. These special cantilevers enable a new imaging m
where we monitor the cantilever deflection at the harmo
corresponding to the third flexural mode. In this paper,
present a model for the response of a resonant harmon
tapping-mode atomic force microscopy. We use this mode
calculate the amplitude and phase of resonant harmonics
a variety of samples and demonstrate that the harmo
serve as a sensitive probe of material properties.

II. THEORY

In tapping mode, the cantilever is driven at the reson
frequency of the fundamental. When it is brought closer
the sample, the tip will periodically contact the sample.
the tip taps on the surface, the periodic impulse25 will excite
the flexural modes together with the higher harmonics. T
amplitude of the harmonics is determined by a variety
parameters as outlined in a later section. Stark and Hec26
©2004 The American Physical Society16-1
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have calculated the amplitudes of the higher harmonics
treating the tip-sample interaction as a linear spring a
modeling the cantilever with a continuum mechanical s
tem. In this paper we will follow the work of Saridet al.27

and model the repulsive forces with the theory of Hertz
contacts and the attractive forces with the theory of Van
Waals interactions. We will use continuum mechanics to a
lyze a cantilever that have been modified so that the
quency of one of the higher flexural models matches
frequency of a harmonic of the fundamental frequency.

A. Calculating the harmonics of tip-sample interaction forces

Various aspects of the dynamics of tapping-mode ato
force microscopy~TM-AFM ! have been studied in detail fo
real and model systems.28–35Here we will calculate the time
course of tip-sample interaction forces, and evaluate the
monics with the Fourier transform.

We are able to use the harmonic approximation to ca
late tip-sample interaction forces because the quality fa
of the cantilevers is very high. Although tip-sample intera
tion contains several harmonics, it is mostly the fundame
harmonic at the driving frequency that affects the motion
the cantilever, because it is at the resonance frequency. O
harmonics act on the tip, but the frequency response of
cantilever at those frequencies is smaller~two to three orders
of magnitude! than the response at the fundamental re
nance frequency. Unfortunately, this approximation can
be used for cantilevers immersed in liquids because the
creased damping reduces the quality factor.

If we neglect the contribution of higher harmonics of t
tip-sample interaction force on the cantilever motion, t
problem is reduced to one of calculating the motion o
cantilever driven at its resonance frequency from both
base and tip. The driving force at the base will generat
free amplitude ofA0 . The force at the tip is unknown and w
are faced with the task of finding the magnitude and ph
~relative to the phase of the cantilever motion! in terms of the
free vibration amplitude, set-point amplitudeAs , phase of
cantilever motion~relative to the driving signal!, and the
spring constant and quality factor of the cantilever. If we
the phase of the cantilever oscillation to zero, the motion
the cantilever can be written asAse

ivt. We represent the
driving force and the fundamental harmonic of the t
sample force asFdei (vt1f) andF ts1e

i (vt1u), respectively,

FTei ~vt1p/2!5Fdei ~vt1f!1F ts1e
i ~vt1u!. ~1!

Here thep/2 phase associated with the total forceFT is due
to the resonance of the cantilever, since on resonance
oscillations of the cantilever follow the total force with
phase delay ofp/2. Balantekin and Atalar36 used the phaso
representation of Eq.~1! and studied the dynamics of a v
brating cantilever in noncontact. In Eq.~1!, FT andFd can be
written in terms of the spring constantK1 , quality factorQ1 ,
free amplitudeA0 , and set-point amplitudeAs as follows:

Fd5K1A0 /Q1 , ~2!

FT5K1As /Q1 . ~3!
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Equation~2! describes a freely vibrating cantilever at res
nance. In Eq.~3! we treat the cantilever as a linear syste
and the tip-sample force together with the driving force a
the inputs to this system. So even though the tip-sam
force is nonlinear, the total force and displacement of
cantilever satisfy the linear relation of Eq.~3!. A similar ap-
proach is used by Starket al.,20 who modeled tip-sample
forces as nonlinear feedback acting on the linear system
the cantilever. In Eq.~3!, FT represents the sum of the non
linear tip-sample forces and the driving force. Therefore,
output of the cantilever, which is the tip displacement, w
satisfy the linear relation valid for a freely vibrating cantil
ver. In this approach, all the nonlinearity in the TM-AFM
system is hidden inFT . By writing Eq. ~3!, we are not ne-
glecting the nonlinear contributions from the tip-sample
teraction, however we are separating the linear and nonlin
parts of the mathematical problem to the solution.

When we substitute Eq.~2! and Eq.~3! into Eq. ~1! and
equate the real and imaginary parts of Eq.~1!, we get the
following relations:

K1A0

Q1
cosf1F ts1 cosu50, ~4!

K1A0

Q1
sinf1F ts1 sinu5

K1A1

Q1
. ~5!

These equations relate the magnitude and phase of the
damental harmonic off ts to the known parameters of th
tapping-mode operation. When we solve these equations
the magnitudeF ts1 and phaseu, we get

F ts15
K1A0

Q1
F12

2As

A0
sinf1

As
2

A0
2G1/2

, ~6!

u5tan21S As2A0 sinf

A0 cosf D . ~7!

These equations relate the magnitude and phase of the
damental harmonic force to the measurable parameters o
cantilever.

An interesting and useful parameter in TM-AFM is th
tip-sample energy dissipation due to the nonconservative
ture of the interaction forces. We would like to calcula
tip-sample energy dissipation with the sample approach
we did for the calculation of the fundamental harmonic
the tip-sample forces. Energy dissipation per oscillat
cycle can be calculated by integrating the instantane
power~the product of tip velocity and tip-sample force! over
one cycle as

Edis52E
2p/v

f ts~ t !y~ t !dt5E
2p/v

Asv f tssin~vt !dt. ~8!

Herey(t) is the first derivative of the position of the tip wit
respect to time. Ify(t) is chosen asAs cos(vt), theny(t) is
equal to2Asv cos(vt). f ts is the tip-sample force in time
domain. Note that no particular interaction model is assum
and this equation is valid for anyf ts. The only approxima-
tion we make is the harmonic approximation, i.e., we assu
6-2
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a pure sinusoidal tip motion. Other than multiplicative term
this integral is equivalent to the coefficient of sin(vt) in Fou-
rier series expansion off ts, which is equal to2F ts1 sinu.
Rewriting Eq.~8! with this replacement, we get

Edis52pAsF ts1 sinu. ~9!

In this equation,F ts1 is given by Eq.~6! and u is given by
Eq. ~7!. Note that for a dissipativef ts,sin(u) is always nega-
tive so that energy dissipation is a positive quantity. Insert
the values forF ts1 andu gives the more familiar relation fo
the energy dissipation per oscillation cycle for a cantile
driven at resonance,13,14

Edis5
pK1As

2

Q1
FA0

As
sinf21G . ~10!

This relationship has been derived earlier by considering
energy loss of tip-sample interaction. That we now find
same expression based on considerations of the tip-sa
forces is an indication that our assumptions and model
correct. It is important to note the relation between phasf
of the cantilever relative to the driving force and phaseu of
the tip-sample interaction forces relative to the cantile
motion. Equation~10! relatesf to the energy dissipation a
the tip-sample contact. BecauseAs andA0 are constants, we
find in Eq. ~7! that u is also a measure of energy dissipati
in the tip-sample contact. In fact, a nonzerou means asym-
metric tip-sample forces in approach and retraction of the
which in turn means that tip-sample forces are nonconse
tive.

Equation~6! shows thatF ts1 depends on the mechanic
properties of the cantilever and the motion of the cantilev
Other thanf, these parameters are independent of the
face properties. Sincef depends on the energy dissipation
tip-sample contact@see Eq.~10!#, F ts1 also depends on tip
sample energy dissipation.

In order to calculate the time course of interaction forc
for a sample with known material properties fromF ts, we
note that the time dependence of the tip-sample force
determined by the maximum indentation depth~i.e., indenta-
tion of the sample when the tip is at its lowest positio!,
which is equivalent to the minimum tip-sample separation
the attractive operation regime. There are two reasons
this. First, the cantilever motion remains nearly sinusoida
typical tapping-mode operation when the cantilever ha
high-quality factor, and second, the tip-sample force depe
only on tip-sample separation and sample indentation. F
given depth of indentation, the time dependence of the
sample separation and sample indentation is fully de
mined. With this information, an interaction model can
used to calculate the tip-sample forces. The interac
model we used for the tip-sample forces assumes a Lenn
Jones type of distance dependence for the attractive for
as shown below,

f ts~r !5
HR

6s2 F2S s

r D 2

1
1

30S s

r D 8G . ~11!
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Here r is the tip-sample separation,H is the Hamaker con-
stant,R is the tip radius, ands is the typical atomic distance
for the tip and the surface. This force is attractive for ti
sample separations larger thanr 053021/6s. To account for
energy dissipation in tip-sample interaction, we used twoH
values for the approach and retraction of the cantilever. T
may not be the most realistic method for including the e
ergy dissipation. However, energy dissipation plays an
portant role in the dynamics of tip motion as indicated by t
hysteresis in adhesion forces that is observed in the
sample interaction. For small separations, the sample is
formed under the influence of repulsive forces. The sam
indentation with a Hertzian contact is approximately

f ts~d!5 4
3 EARd3/2, ~12!

whered is the deformation of the sample. The parameterE is
the reduced elastic modulus of the tip and is given by

1

E
5

12n t
2

Et
1

12ns
2

Es
. ~13!

HereEt ,n t andEs ,ns are the elastic modulus and Poisson
ratios of the tip and the sample, respectively. We use Eq.~11!
for tip-sample separations larger thanr 0 , where the force is
attractive, and Eq.~12! for the positive repulsive force.

The tip-sample interaction model assumes that tip-sam
energy dissipation is due to the attractive forces regardles
sample indentation. This simplifies the calculation, which
justified by noting that most of the samples energy is dis
pated by capillary forces and hysteresis in the Van der Wa
attractive force. With viscoelastic samples the energy is d
sipated when the tip indents the sample. If we assume c
stant dissipation of the tip-sample energy, the phase of
cantilever motionf is determined by Eq.~10!. Equation~6!
determines the interaction forceF ts1. Knowing F ts1, we can
calculate the tip-sample forces for increasing depths of
dentation starting at 0 and increasing until the interact
force has a fundamental harmonic equal to the predeterm
value ofF ts1. In the case of multiple solutions we pick th
solution that belongs to the repulsive regime by looking
the sign of the average tip-sample force. The higher h
monic forces are calculated by taking the Fourier transfo
of the correspondingf ts.

The tip-sample interactions for hard, medium, and s
samples are shown in Fig. 1. The Fourier components
calculated for a cantilever with spring constantK1510, qual-
ity factor Q15100, free amplitudeA05100 nm, and set-
point amplitudeAs580 nm. The reduced Young’s modulu
E for the three samples is chosen to obtain contact durat
of 5%, 10%, and 15% of the period on the hard, mediu
and soft samples, respectively. Attractive forces on all
samples are assumed to be equal for the same amou
energy dissipation at the contact. For the Hamaker const
we used Ha510310220 J for approach andHr530
310220 J for retraction. The parametersR ands are chosen
to be 10 and 0.1 nm, respectively. These values result in
energy dissipation of approximately 30 eV per tap.

According to Fig. 1, harmonics above the fifth are depe
dent on the hardness of the sample. Since the tip-sam
6-3
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force is a periodic clipped sine wave, the width, or cont
duration, determines the harmonic content; shorter pu
will generate larger amplitudes at higher harmonics. The
ration of the contact increases for softer samples. We se
Fig. 1 that the first harmonic for each of the three cases
the same magnitude. This is because the magnitude o
first harmonic is given by Eq.~6! and an inspection of this
equation shows that the only sample-dependent parame
the phasef, which is a measure of energy dissipation.
previously mentioned, tip-sample dissipation is assumed
be constant for each of the three cases in Fig. 1. Theref
the magnitudes of the first harmonics in each of the th
cases are the same. These results show that the highe
monics contain information on the sample stiffness.

B. Mechanical model for the cantilever
with higher-order modes

In order to calculate the amplitude and phase of the c
tilever response to the harmonic forces of the tip-sample
teraction, we need to go beyond the simple harmonic os
lator and model the cantilever as a continuum mechan
system. The motion of the cantilever is governed by
Euler-Bernoulli equation. The solution of this equation fo
rectangular cantilever can be found elsewhere.11,26,37In Ap-
pendix A, we give a brief solution of the equation of motio
for the cantilever when it is driven from its free end and w
will use those results to describe the motion of the cant
vers that are in periodic contact with the sample.

The cantilever~Fig. 2! has several flexural modes of v
bration. With the tip-sample interaction as the driving forc
the motion of the cantilever can be expressed as a supe
sition of eigenmodes. With Eq.~A8! the response of the can
tilever y(x,t) to an external harmonic force applied to th
point x5L ~tip! is expressed as

y~x,t !5eivt
F

M (
n51

`
Yn~L !Yn~x!

vn
22v21 iv/Qn

~n51,2,3,...!.

~14!

FIG. 1. ~Color online! Interaction forces between the tip and th
sample for three different samples:~a! hard, ~b! medium, and~c!
soft. The amplitude of the harmonics for the three tip-sample for
is shown on the right.
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Herey(x,t) is the displacement of the pointx on the canti-
lever at timet. F andv are the magnitude and frequency
the harmonic force.Yn , vn , and Qn are the mode shape
resonance frequency, and quality factor of thenth mode.

Under typical tapping-mode operating conditions, t
quality factor of the resonance of the cantileverQn is high
~typically a few hundred!. Therefore, a given mode will only
be excited if the frequency of the harmonic force,v, is close
to the resonance frequency,vn , of that particular mode.
Since we are interested in the tip displacement, we sex
5L. In addition, with Eq.~A3! we see thatYn

2(L)54 for all
of the modes. Rewriting Eq.~14! with these changes, we ge

y~L,t !5eivt
F

M (
n51

`
4

vn
22v21 iv/Qn

. ~15!

This result shows that the cantilever can be modeled b
series of harmonic oscillators each having an effective m
m5M /4, resonance frequencyvn , and quality factorQn .
The motion of the tip is a superposition of the displacem
of many harmonic oscillators. In tapping mode there are s
eral harmonic forces acting on the tip~see Fig. 1! and the
actual displacement of the tip will be the sum of all th
responses at the frequencies of the harmonics.

In the special case of the resonant harmonic, wherevn is
an integer multiple of the driving frequency, the response
the cantilever at that frequency will be dominated by t
resonance of thenth flexural mode. Since one of the harmo
ics of the tip-sample interaction forces will match the res
nance frequencyvn , the amplitude is enhanced by the qua
ity factor of that mode. The other modes of the cantilev
will not be excited by this harmonic force because they
off-resonance. Therefore, we can neglect the response o
other modes to the resonant harmonic in Eq.~15!. The re-
sponse of the cantilever atvn will be

y~L,t !5eivnt
Fn

Mn

Qn

ivn
2 . ~16!

HereFn is the amplitude of the resonant harmonic force, i.
the Fourier component shown in Fig. 1 that matches the re
nance frequency of thenth flexural mode.Mn is the effective
mass of thenth flexural mode, and is equal toM /4 for a
rectangular cantilever beam. The imaginary unit,i, appears
since on resonance there is ap/2 phase shift between th
driving force and tip displacement. Rather than the mass
resonant frequency, we find it more convenient to work w

s

FIG. 2. Diagram of the cantilever-tip system tapping on a s
face.
6-4
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the effective spring constants of the modes. Using the r
tion v25k/m between mass, spring constant, and resona
frequency of a harmonic oscillator, we define an effect
spring constantKn5Mnvn

2 for each flexural mode of the
cantilever. The effective masses of the modes of a rectan
lar cantilever are the same and one can write

Kn

K1
5S vn

v1
D 2

. ~17!

This equation relates the effective spring constant o
higher-order mode to the quantitiesv1 , vn , andK1 . This
equation provides a rough estimate but it is sufficient for
discussion of the potential of resonant harmonics for stu
ing material properties.

III. RESULTS AND DISCUSSION

Now we have a complete formulation required to calc
late the resonant harmonic response in tapping mode.
first calculate the tip-sample interaction forces and its h
monic content as described in the previous section and
we calculate the displacement of the cantilever at the re
nant harmonic using Eq.~16!. Using this methodology, we
analyze the effects of the sample stiffness on the reso
harmonic. First, we calculate the resonant harmonic respo
as a function of reduced Young’s modulusE. Based on the
results of these calculations, we discuss how the amplit
and phase response relate to sample stiffness. Second
study the effects of cantilever spring constant and set-p
amplitude on the resonant harmonic response. Finally,
consider the harmonic number that is to be enhanced b
flexural resonance. We show that appropriate selection
cantilever spring constant and harmonic number can enh
the resolution of resonant harmonic AFM.

For a given Young’s modulus we calculate the tip-sam
interaction forcef ts as described in the theory section. T
harmonic forces are calculated by taking its Fourier tra
form. Becausef ts is a periodic waveform, we can expand
into Fourier series as follows:

f ts~ t !5 (
k50

`

an cos~kvt !1bn sin~kvt ! ~k50,1,2,...!,

~18!

where the frequencyv is the driving frequency. Coefficient
ak andbk are given as

ak5
v

p E
0

2p/v

f tscos~kvt !dt, ~19a!

bk5
v

p E
0

2p/v

f tssin~kvt !dt. ~19b!

The kth harmonic force can be written as

F tsk cos~kvt1uk!5ak cos~kvt !1bk sin~kvt !. ~20!

HereF tsk5Aak
21bk

2 anduk are the magnitude and phase
the kth harmonic. One of these harmonics will drive
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higher-order resonance that is specifically tuned to be an
teger multiple of the fundamental resonance frequency of
cantilever~i.e., kv5vn , vn is the resonance frequency o
thenth flexural mode of the cantilever!. Phaseuk of a higher
harmonic is defined relative to a reference signal at the s
frequency as the higher harmonic. If we represent the
displacement withAs cos(vt), the reference signal will be
cos(kvt). Note that fork51, F tsk and uk are given by Eqs.
~6! and ~7!.

In Fig. 3, we plot the amplitude and phase response o
resonant harmonic on samples with varyingE for a cantile-
ver with a spring constantK151 N/m and quality factor
Q15100. The free amplitude and set-point amplitude a
chosen to beA05100 nm andAs580 nm, respectively. The
Hamaker constants areHa510310220 J for the approach
and Hr530310220 J for the retraction. We uses50.1 nm
and R510 nm for the spacing and tip radius. These valu
correspond to an energy dissipation of approximately 30
per tap. The resonant harmonic is 16 times the fundame
resonance frequency. This implies that the cantilever be
has been altered to tune the third flexural resonance
quencyv3 to 16 times the fundamental21 ~i.e., v3516v).
The quality factor of the third-order resonance is assume
be 600. According to Eq.~9!, the effective spring constant o
the third resonance is 256 timesK1 . It is not necessary to
specify a fundamental resonance frequency since Eq.~1! is
independent of resonance frequency and since only the
of the frequencies appears in Eq.~17!.

We see in Fig. 3 that the amplitude oscillates betwe
minimum and maximum values with increasing values ofE.
In this range there are multiple values ofE that give the same
amplitude, which complicates signal interpretation. For v
ues of E above the last minimum, the amplitude increas
over a range of two orders of magnitude, and then satur
to a plateau. At the first minimum of Fig. 3, the contact tim
is approximately 2.5 times the period of the 16th harmon
At the second minimum just before the plateau the con
time is 1.5 times the period of the 16th harmonic. To und

FIG. 3. ~Color online! Amplitude ~a! and phase~b! of the reso-
nant harmonic frequency as a function of the stiffness. The unit oE
is Pascal and the base of the logarithm is 10.
6-5
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stand the origin of the minima we consider Eqs.~19a! and
~19b!. If we assume thatf ts has a nonzero value only durin
contact, the intervals of the integrations can be reduced to
contact duration~i.e., pulse width off ts). If the period of the
kth harmonic is less than the contact duration, cosine
sine functions of Eq.~19! have both positive and negativ
contributions to the integration. At a certain contact durati
the positive and negative contributions will largely canc
i.e., we get an amplitude minimum. For longer contact du
tions, the cosine and sine functions reverse signs mult
times, resulting in higher-order amplitude minima, as e
pected of Fourier transforms for periodic pulse waveform
The important point here is that the contact time depends
the stiffness of the sample and the harmonic conten
mainly determined by the contact time. This means that
harmonic amplitude is a function of the contact time. Sin
the contact time is related to the sample stiffness, we h
gained a tool for monitoring the stiffness.

We now consider the origin of the phase shifts. In Eq.~19!
we see that the coefficientsak andbk correspond to symmet
ric ~even! and antisymmetric~odd! components of the tip-
sample interaction forcef ts becauseak uses the even func
tion cosine andbk uses the odd function sine. If tip-samp
interaction forces are equal in approach and retraction of
tip to the surface,bk anduk will be 0. With energy dissipa-
tion in tip-sample forces,bk will be nonzero anduk will be a
measure of the ratio of dissipative forces (bk) to conserva-
tive forces (ak). In addition to the phase of the resona
harmonic off ts, there is an additionalp/2 phase delay in the
response of the cantilever at the frequency of resonant
monic because of the resonance of the cantilever at that
quency. In Fig. 3~b!, we show the phase of the 16th ha
monic. We see that the phase is changing with the stiffnes
the surface even though the energy dissipation is consta
all values ofE. The phase of 16th harmonic depends on
amount of energy dissipation as well as the time of dissi
tion. In our tip-sample interaction model, energy is dissipa
just before the contact is broken~attractive forces are large
in retraction!, and therefore the phase of the 16th harmo
contains information on the contact time. This produce
change in the variation of phase asE changes. At each am
plitude minima the phase change is faster with changes iE.
Calculations for the case where there is no dissipation in
tip-sample interaction showp phase shifts at the minima
These phase shifts are smoothed by finite dissipation.

In Fig. 4, we compare the amplitude and phase of
resonant harmonics for two different set-point amplitud
and two different cantilever spring constants. Figures 4~a!
and 4~b! show the amplitude and phase responses for
varying set-point amplitude case (AS560 nm and 80 nm!. In
Figs. 4~c! and 4~d! we show the amplitude and phase for tw
values of the spring constant case (K151 and 10 N/m!.
These figures show that with a stiffer cantilever and sma
set-point amplitude~with free amplitude held constant! the
curves shift toward higherE. Both of these changes wil
increase the tip-sample force and, in turn, the contact t
will increase, since the depth of the indent is increased
follows that as the force increases, the sample stiffness m
increase to maintain the same contact time.
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For imaging we can record the amplitude or the phase
the resonant harmonic while scanning the surface in tapp
mode. According to the results depicted in Figs. 3 and 4,
amplitude and phase signals are correlated with the stiffn
of the surface in the vicinity of the tip. Therefore, an ima
generated by monitoring the resonant harmonic will map
elastic properties of the sample. One would prefer that
local stiffness values fall in the region between the last m
mum and the plateau of Fig. 3. Preliminary knowledge of
nominal stiffness of the sample allows us to design a ca
lever with the correct spring constant. In Fig. 4~c!, we see
that softer cantilevers will have the last minimum before t
plateau at lowerE and stiff cantilevers have their last min
mum at higher values ofE. It is important to note that a
cantilever that is too soft will reduce the sensitivity. For e
ample, according to Fig. 4~c! a cantilever withK1510 N/m
is most sensitive to stiffness variations around 10 GPa w
a cantilever withK151 N/m is less sensitive in that range o
materials. On the other hand, the cantilever withK1
51 N/m is sensitive to variations around 1 GPa. A prop
value for the spring constant is crucial for operating in t
monotonically increasing and highly sensitive region. This
not a very limiting constraint, because the monotonically
creasing region extends over almost two orders of magnit
beyond the last amplitude minimum before it reaches
plateau~see Fig. 3!. It is unlikely that the variations in a
given sample will be this large. Although we need to use s
cantilevers for compliant samples and stiff cantilevers
hard samples, some flexibility is provided by adjusting t
set-point amplitude to tune the sensitivity@see Fig. 4~a!#.

Heretofore, the resonant harmonics were assumed to b
the 16th harmonic of the driving frequency. Now we wou
like to discuss the case where the frequency of the reso
harmonic is equal to other integer multiples of the fundam
tal resonance frequency. We have calculated the reso
harmonic response for cantilevers with their higher-ord
resonant frequencies at the 8th, 16th, and 24th harmonic.

FIG. 4. ~Color online! Amplitude and phase responses at t
resonant harmonic for a cantilever at two different set-point am
tudes @~a! and ~b!# and for two cantilevers with different spring
constants@~c! and ~d!#. The unit ofE is Pascal and the base of th
logarithm is 10.
6-6



st

n
un
th
b
n
.
er
1
n

al
o
a

ea
ze
h
e
.
c
a

ni
th
de
th
t

tu

at
am
m
pe
gh
In

not
des.
ar-
vi-

of a
ncy
ore
en-
ple

on
har-
ing

ller
ther
e
ntal
e
e at
that
are

he

in
al-
the
f a
ant
op-
har-
is a
ant
tion
set-
is
as

uc-
y.

f a

mo-

-

of

t
ted
h
t

re
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cantilevers are assumed to all have the same spring con
for the fundamental vibration mode,K152 N/m. We are
only interested in the general behavior of the resona
harmonic response at different integer multiples of the f
damental. The spring constant and quality factors of
higher-order resonances will affect the amplitude values,
they will not change the general trend of the amplitude a
phase variations as the hardness of the surface changes
cording to Eq.~17!, the spring constant of the higher-ord
resonances of these cantilevers will be 128, 512, and 1
N/m, respectively. For all three cantilevers, the set-point a
free amplitudes are chosen as 80 and 100 nm. The qu
factors of the higher-order resonances are all assumed t
equal to 600. These assumptions for the spring constants
quality factors for the higher orders are not necessarily r
istic but they simplify calculations. In Fig. 5 we summari
the results for three cases of the calculated resonant
monic response. All three amplitude responses converg
their maximum as the hardness of the surface increases
previously discussed in Fig. 3, the amplitude minimum o
curs when contact duration and the period of the higher h
monic satisfy a certain ratio. Therefore, the 24th harmo
has its first amplitude minimum at a harder surface than
16th and the 16th harmonic has its first minimum at a har
surface than the 8th harmonic. This result indicates that
24th harmonic is more sensitive to harder samples and
8th harmonic is more sensitive to softer samples. This fea
guides us in our choice of harmonics.

The amplitudes of the resonant harmonics saturate
few nanometers, which is small compared to a set-point
plitude of 80 nm. Since the depth of the indentation is co
parable to these amplitudes, we expect that the time de
dence of tip-sample interaction forces is affected by the hi
frequency vibrations of the resonant higher-order modes.

FIG. 5. ~Color online! Amplitude ~a! and phase~b! responses a
the resonant harmonics when the resonant harmonics are loca
the 8th, 16th, and 24th harmonics of the driving frequency. T
amplitude response at the 8th harmonic is much higher than
others; therefore, we divided it by 10 in order to see all the
sponses clearly within one graph. The unit ofE is Pascal and the
base of the logarithm is 10.
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typical tapping-mode experiment, higher harmonics do
match the resonance frequencies of the higher-order mo
This results in relatively small amplitude at the higher h
monic and one can neglect the effect of high-frequency
brations on the tip-sample forces. However, in the case
resonant harmonic, the amplitude at that particular freque
is enhanced by the resonance of the cantilever. For a m
detailed analysis one must incorporate the effects of the
hanced amplitude at the resonant harmonic on tip-sam
forces.

It is important to note that there is a significant reducti
in the noise floor for the frequencies near the resonant
monic. Since the higher-order modes have effective spr
constants much higher than the fundamental@see Eq.~9!#,
the vibration amplitude due to thermal noise is much sma
at those frequencies. There is a significant reduction in o
sources of noise as well; the 1/f noise is reduced since th
signal has been moved to a higher frequency. Experime
results of Sahinet al.23 show that at the 16th harmonic, th
noise floor is reduced by 30 dB as compared to the nois
the fundamental mode. This reduced noise floor means
even though the amplitudes at the resonant harmonics
relatively small, they offer an opportunity to measure t
properties of the sample surface at the nanoscale.

IV. CONCLUSIONS

We have presented a study of the cantilever motion
tapping-mode atomic force microscopy for a cantilever
tered in such a way that the frequency of a harmonic of
fundamental mode matched the resonant frequency o
higher flexural mode. The results show that these reson
harmonics are sensitive to variations in the mechanical pr
erties of materials. Since the amplitudes at the resonant
monic are enhanced and the noise floor is reduced, there
significant increase in the signal-to-noise ratio. The reson
harmonic response can be tuned for the desired applica
by selecting the correct value of the spring constant, the
point/free amplitude, and the higher harmonic. With th
technique, elastic properties of very soft samples such
biological films and very hard samples such as semicond
tor materials can be investigated with improved sensitivit

APPENDIX A

Here we derive the equations governing the motion o
rectangular cantilever fixed at one end~base! and driven by
an external force at the other end. The cantilever is a ho
geneous rectangular elastic beam that has a widtha, heightb,
and lengthL. The equation of motion for the flexural vibra
tions is given by the differential equation

EI
]4y

]x4 1g
]y

]t
1rA

]2y

]t2 5Fd~x2L !eivt. ~A1!

Here E is the elasticity modulus,r is the mass density,I
5ab3/12 is the area moment of inertia, andA5ab is the
cross section.y(x,t) stands for the vertical displacement
the cantilever at positionx. F is the magnitude of the driving
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-
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force andd is the impulse function. Gamma represents
damping in the system. A better approximation for the dam
ing results in a slightly more complicated equation of m
tion, the solution for which can be found in Ref. 26. Sin
the quality factors of cantilevers in air are relatively high, t
effect of viscous damping and internal dissipation on
mode shapes and eigen-frequencies is negligible. Then
general solution to Eq.~A1! can be expressed as a superp
sition of the natural modes of the undamped cantilever
follows:

y~x,t !5e2 ivt (
n51

`

PnYn~x!. ~A2!

HereYn(x) is the displacement of each natural mode andPn
is an arbitrary coefficient that depends on the driving for
Yn(x) is given by

Yn~x!5S sin~knL !2sinh~knL !

cos~knL !1cosh~knL ! D @sin~knx!2sinh~knx!#

1@cos~knx!2cosh~knx!#, ~A3!

where kn is the wave number satisfying the characteris
equation

cos~knL !cosh~knL !1150 $n51,2,...%. ~A4!

For eachkn satisfying the above relation there is a corr
sponding natural mode of the cantilever and a resonance
J

y

d

I.

S.

te

s
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quency vn that is determined by the dispersion relatio
EIk42rAv250. By inserting Eq.~A3! into Eq. ~A1! and
eliminating the exponential time dependency, we get

(
n51

`

~EIkn
42rAv2!PnYn~x!5Fd~x2L !. ~A5!

In this equation the arbitrary coefficientsPn can be found by
using the orthogonality of the modes. That is, for any tw
modes,Ym(x) andYn(x) will satisfy the condition

E
0

L

Ym~x!Yn~x!dx5Ldmn . ~A6!

If we multiply both sides of Eq.~A5! with Ym(x) and inte-
grate over the length of the cantilever, and using the rela
given in Eq.~A6!, we get

Pn5
F

M

Y~L !

vn
22v21 ivvn /Qn

. ~A7!

The displacement of the cantilevery(x,t) can be found by
substitutingPn and Yn into Eq. ~A2!. Then y(x,t) will be
given by

y~x,t !5
Feivt

M (
n51

`
Y~L !Yn~x!

vn
21 ivvn /Qn2v2 . ~A8!
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