390 research outputs found

    Twist1-Haploinsufficiency Selectively Enhances the Osteoskeletal Capacity of Mesoderm-Derived Parietal Bone Through Downregulation of Fgf23

    Get PDF
    Craniofacial development is a program exquisitely orchestrated by tissue contributions and regulation of genes expression. The basic helix–loop–helix (bHLH) transcription factor Twist1 expressed in the skeletal mesenchyme is a key regulator of craniofacial development playing an important role during osteoskeletogenesis. This study investigates the postnatal impact of Twist1 haploinsufficiency on the osteoskeletal ability and regeneration on two calvarial bones arising from tissues of different embryonic origin: the neural crest-derived frontal and the mesoderm-derived parietal bones. We show that Twist1 haplonsufficiency as well Twist1-sh-mediated silencing selectively enhanced osteogenic and tissue regeneration ability of mesoderm-derived bones. Transcriptomic profiling, gain-and loss-of-function experiments revealed that Twist1 haplonsufficiency triggers its selective activity on mesoderm-derived bone through a sharp downregulation of the bone-derived hormone Fgf23 that is upregulated exclusively in wild-type parietal bone

    Physicochemical Characterization of Passive Films and Corrosion Layers by Differential Admittance and Photocurrent Spectroscopy

    Get PDF
    Two different electrochemical techniques, differential admittance and photocurrent spectroscopy, for the characterization of electronic and solid state properties of passive films and corrosion layers are described and critically evaluated. In order to get information on the electronic properties of passive film and corrosion layers as well as the necessary information to locate the characteristic energy levels of the passive film/electrolyte junction like: flat band potential (Ufb), conduction band edge (EC) or valence band edge (EV), a wide use of Mott-Schottky plots is usually reported in corrosion science and passivity studies. It has been shown, in several papers, that the use of simple M-S theory to get information on the electronic properties and energy levels location at the film/electrolyte interface can be seriously misleading and/or conflicting with the physical basis underlying the M-S theory. A critical appraisal of this approach to the study of very thin and thick anodic passive film grown on base-metals (Cr, Ni, Fe, SS etc..) or on valve metals (Ta, Nb, W etc..) is reported in this work, together with possible alternative approach to overcome some of the mentioned inconsistencies. At this aim the theory of amorphous semiconductor Schottky barrier, introduced several years ago in the study of passive film/electrolyte junction, is reviewed by taking into account some of the more recent results obtained by the present authors. Future developments of the theory appears necessary to get more exact quantitative information on the electronic properties of passive films, specially in the case of very thin film like those formed on base metals and their alloys. The second technique described in this chapter, devoted to the physico-chemical characterization of passive film and corrosion layers, is a more recent technique based on the analysis of the photo-electrochemical answer of passive film/electrolyte junction under illumination with photons having suitable energy. Such a technique usually referred to as Photocurrent Spectroscopy (PCS) has been developed on the basis of the large research effort carried out by several groups in the 1970’s and aimed to investigate the possible conversion of solar energy by means of electrochemical cells. In this work the fundamentals of semiconductor/electrolyte junctions under illumination will be highlighted both for crystalline and amorphous materials. The role of amorphous nature and film thickness on the photo-electrochemical answer of passive film/solution interface is reviewed as well the use of PCS for quantitative analysis of the film composition based on a semi-empirical correlation between optical band gap and difference of electronegativity of film constituents previously suggested by the present authors. In this frame the results of PCS studies on valve metal oxides and valve metal mixed oxides will be discussed in order to show the validity of the proposed method. The results of PCS studies aimed to get information on passive film composition and carried out by different authors on base metals (Fe, Cr, Ni) and their alloys, including stainless steel, will be also compared with compositional analysis carried out by well-established surface analysis techniques

    Activation of FGF Signaling Mediates Proliferative and Osteogenic Differences between Neural Crest Derived Frontal and Mesoderm Parietal Derived Bone

    Get PDF
    BACKGROUND: As a culmination of efforts over the last years, our knowledge of the embryonic origins of the mammalian frontal and parietal cranial bones is unambiguous. Progenitor cells that subsequently give rise to frontal bone are of neural crest origin, while parietal bone progenitors arise from paraxial mesoderm. Given the unique qualities of neural crest cells and the clear delineation of the embryonic origins of the calvarial bones, we sought to determine whether mouse neural crest derived frontal bone differs in biology from mesoderm derived parietal bone. METHODS: BrdU incorporation, immunoblotting and osteogenic differentiation assays were performed to investigate the proliferative rate and osteogenic potential of embryonic and postnatal osteoblasts derived from mouse frontal and parietal bones. Co-culture experiments and treatment with conditioned medium harvested from both types of osteoblasts were performed to investigate potential interactions between the two different tissue origin osteoblasts. Immunoblotting techniques were used to investigate the endogenous level of FGF-2 and the activation of three major FGF signaling pathways. Knockdown of FGF Receptor 1 (FgfR1) was employed to inactivate the FGF signaling. RESULTS: Our results demonstrated that striking differences in cell proliferation and osteogenic differentiation between the frontal and parietal bone can be detected already at embryonic stages. The greater proliferation rate, as well as osteogenic capacity of frontal bone derived osteoblasts, were paralleled by an elevated level of FGF-2 protein synthesis. Moreover, an enhanced activation of FGF-signaling pathways was observed in frontal bone derived osteoblasts. Finally, the greater osteogenic potential of frontal derived osteoblasts was dramatically impaired by knocking down FgfR1. CONCLUSIONS: Osteoblasts from mouse neural crest derived frontal bone displayed a greater proliferative and osteogenic potential and endogenous enhanced activation of FGF signaling compared to osteoblasts from mesoderm derived parietal bone. FGF signaling plays a key role in determining biological differences between the two types of osteoblasts

    Clinical Application of Ultra-High-Frequency Ultrasound

    Get PDF
    Musculoskeletal ultrasound involves the study of many superficial targets, especially in the hands, wrists, and feet. Many of these areas are within the first 3 cm of the skin surface and are ideal targets for ultra-high-frequency ultrasound. The high spatial resolution and the superb image quality achievable allow foreseeing a wider use of this novel technique, which has the potential to bring innovation to diagnostic imaging

    Post-graduate medical education in public health: The case of Italy and a call for action

    Get PDF
    Public health technical expertise is of crucial importance to inform decision makers\u2019 action in the field of health and its broader determinants. Improving education and training of public health professionals for both practice and research is the starting point to strengthen the role of public health so that current health challenges can be efficiently tackled. At the Association of Schools of Public Health in the European Region (ASPHER) Deans\u2019 & Directors\u2019 2017 Annual Retreat, we presented the structure and management of public health training system in Italy, and we reported recent data on Italian public health specialists\u2019 educational experience, employment opportunities and job satisfaction. Public health training in Italy is implemented in the context of the post-graduate medical education residency programme in Hygiene and Preventive Medicine, delivered by 34 University-based Schools of Public Health. We report relatively high employment rates across the county and wide spectrum of career opportunities for young public health specialists. However, job security is low and training expectations only partially met. We call upon other Schools of Public Health to scale up the survey within the broad ASPHER community in a shared and coordinated action of systematically collecting useful data that can inform the development of public health education and training models, their implementation and fruitful interaction with population health, health systems and services

    Norovirus gastroenteritis general outbreak associated with raw shellfish consumption in South Italy

    Get PDF
    BACKGROUND: Despite Noroviruses (NV, previously "Norwalk-like viruses") being a leading cause of acute gastroenteritis outbreaks, the impact of NV infection is at present unknown and little information is available about strains circulating in Italy. In April 2002 an outbreak of gastroenteritis occurred in the province of Bari (South-east Italy), involving several households. METHODS: A retrospective cohort study was performed in order to assess risk factors associated with illness. All households where a case occurred were included in the study. Faecal specimens were collected from ill individuals. NV-specific RT-PCR was performed. Eleven samples of mussels were collected from fish-markets involved in the outbreak. A nested PCR was used for mussel samples. RESULTS: One hundred and three cases, detected by means of active surveillance, met the case definition. Raw shellfish eating was the principal risk factor for the disease, as indicated by the analytic issues (Risk Ratio: 1.50; IC 95%: 1.18 – 1.89; p < 0.001). NVs were found by means of RT-PCR of all the stool specimens from the 24 patients tested. Eleven samples of shellfish from local markets were tested for the presence or NVs; six were positive by nested PCR and genotypes were related to that found in patients' stools. CONCLUSION: This is the first community outbreak caused by NVs related to sea-food consumption described in Italy. The study confirms that the present standards for human faecal contamination do not seem to be a reliable indicator of viral contaminants in mussels

    Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes.

    Get PDF
    A considerable body of research indicates that mammary gland branching morphogenesis is dependent, in part, on the extracellular matrix (ECM), ECM-receptors, such as integrins and other ECM receptors, and ECM-degrading enzymes, including matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of metalloproteinases (TIMPs). There is some evidence that these ECM cues affect one or more of the following processes: cell survival, polarity, proliferation, differentiation, adhesion, and migration. Both three-dimensional culture models and genetic manipulations of the mouse mammary gland have been used to study the signaling pathways that affect these processes. However, the precise mechanisms of ECM-directed mammary morphogenesis are not well understood. Mammary morphogenesis involves epithelial 'invasion' of adipose tissue, a process akin to invasion by breast cancer cells, although the former is a highly regulated developmental process. How these morphogenic pathways are integrated in the normal gland and how they become dysregulated and subverted in the progression of breast cancer also remain largely unanswered questions

    The effect of an external magnetic force on cell adhesion and proliferation of magnetically labeled mesenchymal stem cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As the strategy for tissue regeneration using mesenchymal stem cells (MSCs) for transplantation, it is necessary that MSCs be accumulated and kept in the target area. To accumulate MSCs effectively, we developed a novel technique for a magnetic targeting system with magnetically labeled MSCs and an external magnetic force. In this study, we examined the effect of an external magnetic force on magnetically labeled MSCs in terms of cell adhesion and proliferation.</p> <p>Methods</p> <p>Magnetically labeled MSCs were plated at the bottom of an insert under the influence of an external magnetic force for 1 hour. Then the inserts were turned upside down for between 1 and 24 hours, and the number of MSCs which had fallen from the membrane was counted. The gene expression of MSCs affected magnetic force was analyzed with microarray. In the control group, the same procedure was done without the external magnetic force.</p> <p>Results</p> <p>At 1 hour after the inserts were turned upside down, the average number of fallen MSCs in the magnetic group was significantly smaller than that in the control group, indicating enhanced cell adhesion. At 24 hours, the average number of fallen MSCs in the magnetic group was also significantly smaller than that in control group. In the magnetic group, integrin alpha2, alpha6, beta3 BP, intercellular adhesion molecule-2 (ICAM-2), platelet/endothelial cell adhesion molecule-1 (PECAM-1) were upregulated. At 1, 2 and 3 weeks after incubation, there was no statistical significant difference in the numbers of MSCs in the magnetic group and control group.</p> <p>Conclusions</p> <p>The results indicate that an external magnetic force for 1 hour enhances cell adhesion of MSCs. Moreover, there is no difference in cell proliferation after using an external magnetic force on magnetically labeled MSCs.</p

    Outcomes of minimally invasive partial nephrectomy among very elderly patients: Report from the resurge collaborative international database

    Get PDF
    The aim of the study was to perform a comprehensive investigation of clinical outcomes of robot-assisted partial nephrectomy (RAPN) or laparoscopic partial nephrectomy (LPN) in elderly patients presenting with a renal mass.The REnal SURGery in Elderly (RESURGE) collaborative database was queried to identify patients aged 75 or older diagnosed with cT1-2 renal mass and treated with RAPN or LPN. Study outcomes were: overall complications (OC); warm ischemia time (WIT) and 6-month estimated glomerular filtration rate (eGFR); positive surgical margins (PSM), disease recurrence (REC), cancer-specific mortality (CSM) and other-cause mortality (OCM). Descriptive statistics, Kaplan-Meier, smoothed Poisson plots and logistic and linear regression models (MVA) were used.Overall, 216 patients were included in this analysis. OC rate was 34%, most of them being of low Clavien grade. Median WIT was 17 minutes and median 6-month eGFR was 54 ml/min/1.73 m(2). PSM rate was 5%. After a median follow-up of 20 months, the 5-year rates of REC, CSM and OCM were 4, 4 and 5%, respectively. At MVA predicting perioperative morbidity, RAPN relative to LPN (odds ratio [OR] 0.33; p &lt;0.0001) was associated with lower OC rate. At MVA predicting functional outcomes, RAPN relative to LPN was associated with shorter WIT (estimate [EST]-4.09; p &lt;0.0001), and with higher 6-month eGFR (EST 6.03; p = 0.01).In appropriately selected patients with small renal masses, minimally-invasive PN is associated with acceptable perioperative outcomes. The use of a robotic approach over a standard laparoscopic approach can be advantageous with respect to clinically relevant outcomes, and it should be preferred when available

    Bone invading NSCLC cells produce IL-7: mice model and human histologic data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bone metastases are a common and dismal consequence of lung cancer that is a leading cause of death. The role of IL-7 in promoting bone metastases has been previously investigated in NSCLC, but many aspects remain to be disclosed. To further study IL-7 function in bone metastasis, we developed a human-in-mice model of bone aggression by NSCLC and analyzed human bone metastasis biopsies.</p> <p>Methods</p> <p>We used NOD/SCID mice implanted with human bone. After bone engraftment, two groups of mice were injected subcutaneously with A549, a human NSCLC cell line, either close or at the contralateral flank to the human bone implant, while a third control group did not receive cancer cells. Tumor and bone vitality and IL-7 expression were assessed in implanted bone, affected or not by A549. Serum IL-7 levels were evaluated by ELISA. IL-7 immunohistochemistry was performed on 10 human bone NSCLC metastasis biopsies for comparison.</p> <p>Results</p> <p>At 12 weeks after bone implant, we observed osteogenic activity and neovascularization, confirming bone vitality. Tumor aggressive cells implanted close to human bone invaded the bone tissue. The bone-aggressive cancer cells were positive for IL-7 staining both in the mice model and in human biopsies. Higher IL-7 serum levels were found in mice injected with A549 cells close to the bone implant compared to mice injected with A549 cells in the flank opposite to the bone implant.</p> <p>Conclusions</p> <p>We demonstrated that bone-invading cells express and produce IL-7, which is known to promote osteoclast activation and osteolytic lesions. Tumor-bone interaction increases IL-7 production, with an increase in IL-7 serum levels. The presented mice model of bone invasion by contiguous tumor is suitable to study bone-tumor cell interaction. IL-7 plays a role in the first steps of metastatic process.</p
    • …
    corecore