1,092 research outputs found

    Center Vortex Model for the Infrared Sector of SU(3) Yang-Mills Theory - Vortex Free Energy

    Full text link
    The vortex free energy is studied in the random vortex world-surface model of the infrared sector of SU(3) Yang-Mills theory. The free energy of a center vortex extending into two spatial directions, which is introduced into Yang-Mills configurations when acting with the 't Hooft loop operator, is verified to furnish an order parameter for the deconfinement phase transition. It is shown to exhibit a weak discontinuity at the critical temperature, corresponding to the weak first order character of the transition.Comment: 13 pages, 2 figures containing 3 eps file

    Spectral sum for the color-Coulomb potential in SU(3) Coulomb gauge lattice Yang-Mills theory

    Full text link
    We discuss the essential role of the low-lying eigenmodes of the Faddeev-Popov (FP) ghost operator on the confining color-Coulomb potential using SU(3) quenched lattice simulations in the Coulomb gauge. The color-Coulomb potential is expressed as a spectral sum of the FP ghost operator and has been explored by partially summing the FP eigenmodes. We take into account the Gribov copy effects that have a great impact on the FP eigenvalues and the color-Coulomb potential. We observe that the lowest eigenvalue vanishes in the thermodynamic limit much faster than that in the Landau gauge. The color-Coulomb potential at large distances is governed by the near-zero FP eigenmodes; in particular, the lowest one accounts for a substantial portion of the color-Coulomb string tension comparable to the Wilson string tension.Comment: 14 pages, 14 figure

    Magnetic Monopoles, Center Vortices and Topology of Gauge Fields

    Get PDF
    The topological properties of magnetic monopoles and center vortices arising, respectively, in Abelian and center gauges are studied in continuum Yang-Mills Theory. For this purpose the continuum analog of the maximum center gauge is constructed.Comment: talk presented at LATTICE99(topology) at Pisa, Italy, 3 page

    Fermion Energies in the Background of a Cosmic String

    Full text link
    We provide a thorough exposition, including technical and numerical details, of previously published results on the quantum stabilization of cosmic strings. Stabilization occurs through the coupling to a heavy fermion doublet in a reduced version of the standard model. We combine the vacuum polarization energy of fermion zero-point fluctuations and the binding energy of occupied energy levels, which are of the same order in a semi-classical expansion. Populating these bound states assigns a charge to the string. We show that strings carrying fermion charge become stable if the electro-weak bosons are coupled to a fermion that is less than twice as heavy as the top quark. The vacuum remains stable in our model, because neutral strings are not energetically favored. These findings suggests that extraordinarily large fermion masses or unrealistic couplings are not required to bind a cosmic string in the standard model.Comment: 38 pages, 6 figures, version accepted for publication in Phys Rev

    Coulomb gauge confinement in the heavy quark limit

    Full text link
    The relationship between the nonperturbative Green's functions of Yang-Mills theory and the confinement potential is investigated. By rewriting the generating functional of quantum chromodynamics in terms of a heavy quark mass expansion in Coulomb gauge, restricting to leading order in this expansion and considering only the two-point functions of the Yang-Mills sector, the rainbow-ladder approximation to the gap and Bethe-Salpeter equations is shown to be exact in this case and an analytic, nonperturbative solution is presented. It is found that there is a direct connection between the string tension and the temporal gluon propagator. Further, it is shown that for the 4-point quark correlation functions, only confined bound states of color-singlet quark-antiquark (meson) and quark-quark (baryon) pairs exist.Comment: 22 pages, 6 figure

    Monopole Condensation and Antisymmetric Tensor Fields: Compact QED and the Wilsonian RG Flow in Yang-Mills Theories

    Get PDF
    A field theoretic description of monopole condensation in strongly coupled gauge theories is given by actions involving antisymmetric tensors B_{\mu\nu} of rank 2. We rederive the corresponding action for 4d compact QED, summing explicitly over all possible monopole configurations. Its gauge symmetries and Ward identities are discussed. Then we consider the Wilsonian RGs for Yang-Mills theories in the presence of collective fields (again tensors B_{\mu\nu}) for the field strengths F_{\mu \nu} associated to the U(1) subgroups. We show that a ``vector-like'' Ward identity for the Wilsonian action involving B_{\mu\nu}, whose validity corresponds to monopole condensation, constitutes a fixed point of the Wilsonian RG flow.Comment: 18 pages (LaTeX2e), 1 fi
    • …
    corecore