759 research outputs found
Preparation of Tradescantia pallida-mediated zinc oxide nanoparticles and their activity against cervical cancer cell lines
Purpose: To synthesize zinc oxide nanoparticles (ZnO NPs) using Tradescantia pallida. (Commelinaceae) and determine their fluorescent and cytotoxic properties.Methods: ZnO NPs were synthesized according to a simple protocol using T. pallida aqueous leaf extract (TPALE). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to analyze the morphology of the ZnO NPs. X-ray diffraction (XRD) and Fourier transforminfrared spectroscopy (FTIR) measurements were performed to determine their crystalline nature and functional groups, respectively. Fluorescence spectroscopy was used to assess the photoluminescence properties of ZnO NPs. Upon confirmation of ZnO NP synthesis, cytotoxicity tests were carried out against HeLa cell line by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay.Results: The agglomerated ZnO NPs were rod-shaped and had a mean particle size of 25 ± 2 nm. Further, they exhibited good photoluminescence with correlation to ZnO crystals. MTT assay results indicated significant cytotoxicity against HeLa cervical cancer cell line.Conclusion: A simple approach for ZnO NP synthesis based on TPALE has been developed successfully. The synthesized ZnO NPs demonstrate good luminescence properties and cytotoxicity against cervical cancer line.Keywords: Commelinaceae, Cytotoxicity, Photoluminescence, Setcreasea pallida, Setcreasea purpurea, Tradescantia pallida, ZnO nanoparticle
Functional Genetic Diversity and Culturability of Petroleum-Degrading Bacteria Isolated From Oil-Contaminated Soils
In this study, we compared the culturability of aerobic bacteria isolated from long-term oil-contaminated soils via enrichment and direct-plating methods; bacteria were cultured at 30°C or ambient temperatures. Two soil samples were collected from two sites in the Shengli oilfield located in Dongying, China. One sample (S0) was close to the outlet of an oil-production water treatment plant, and the other sample (S1) was located 500 m downstream of the outlet. In total, 595 bacterial isolates belonging to 56 genera were isolated, distributed in Actinobacteria, Firmicutes, Bacterioidetes, and Proteobacteria. It was interesting that Actinobacteria and Firmicutes were not detected from the 16S rRNA gene clone library. The results suggested the activation of rare species during culture. Using the enrichment method, 239 isolates (31 genera) and 96 (22 genera) isolates were obtained at ambient temperatures and 30°C, respectively, from S0 soil. Using the direct-plating method, 97 isolates (15 genera) and 163 isolates (20 genera) were obtained at ambient temperatures and 30°C, respectively, from two soils. Of the 595 isolates, 244 isolates (41.7% of total isolates) could degrade n-hexadecane. A greater number of alkane-degraders was isolated at ambient temperatures using the enrichment method, suggesting that this method could significantly improve bacterial culturability. Interestingly, the proportion of alkane degrading isolates was lower in the isolates obtained using enrichment method than that obtained using direct-plating methods. Considering the greater species diversity of isolates obtained via the enrichment method, this technique could be used to increase the diversity of the microbial consortia. Furthermore, phenol hydroxylase genes (pheN), medium-chain alkane monooxygenases genes (alkB and CYP153A), and long-chain alkane monooxygenase gene (almA) were detected in 60 isolates (11 genotypes), 91 isolates (27 genotypes) and 93 isolates (24 genotypes), and 34 isolates (14 genotypes), respectively. This study could provide new insights into microbial resources from oil fields or other environments, and this information will be beneficial for bioremediation of petroleum contamination and for other industrial applications
Olmutinib (BI1482694/HM61713), a Novel Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor, Reverses ABCG2-Mediated Multidrug Resistance in Cancer Cells
The main characteristic of tumor cell resistance is multidrug resistance (MDR). MDR is the principle cause of the decline in clinical efficacy of chemotherapeutic drugs. There are several mechanisms that could cause MDR. Among these, one of the most important mechanisms underlying MDR is the overexpression of adenosine triphosphate (ATP)-binding cassette (ABC) super-family of transporters, which effectively pump out cytotoxic agents and targeted anticancer drugs across the cell membrane. In recent years, studies found that ABC transporters and tyrosine kinase inhibitors (TKIs) interact with each other. TKIs may behave as substrates or inhibitors depending on the expression of specific pumps, drug concentration, their affinity for the transporters and types of co-administered agents. Therefore, we performed in vitro experiments to observe whether olmutinib could reverse MDR in cancer cells overexpressing ABCB1, ABCG2, or ABCC1 transporters. The results showed that olmutinib at 3 μM significantly reversed drug resistance mediated by ABCG2, but not by ABCB1 and ABCC1, by antagonizing the drug efflux function in ABCG2-overexpressing cells. In addition, olmutinib at reversal concentration affected neither the protein expression level nor the localization of ABCG2. The results observed from the accumulation/efflux study of olmutinib showed that olmutinib reversed ABCG2-mediated MDR with an increasing intracellular drug accumulation due to inhibited drug efflux. We also had consistent results with the ATPase assay that olmutinib stimulated ATPase activity of ABCG2 up to 3.5-fold. Additionally, the molecular interaction between olmutinib and ABCG2 was identified by docking simulation. Olmutinib not only interacts directly with ABCG2 but also works as a competitive inhibitor of the transport protein. In conclusion, olmutinib could reverse ABCG2-mediated MDR. The reversal effect of olmutinib on ABCG2-mediated MDR cells is not due to ABCG2 expression or intracellular localization, but rather related to its interaction with ABCG2 protein resulting in drug efflux inhibition and ATPase stimulation
RNA Interference inhibits Hepatitis B Virus of different genotypes in Vitro and in Vivo
<p>Abstract</p> <p>Background</p> <p>Hepatitis B virus (HBV) infection increases the risk of liver disease and hepatocellular carcinoma. Small interfering RNA (siRNA) can be a potential new tool for HBV therapy. Given the high heterogeneity of HBV strains and the sensitivity towards sequences changes of siRNA, finding a potent siRNA inhibitor against the conservative site on the HBV genome is essential to ensure a therapeutic application.</p> <p>Results</p> <p>Forty short hairpin RNA (shRNA) expression plasmids were constructed to target conserved regions among nine HBV genotypes. HBV 1.3-fold genome plasmids carrying various genotypes were co-transfected with shRNA plasmids into either Huh7 cells or mice. The levels of various viral markers were examined to assess the anti-HBV efficacy of siRNA. Four (B245, B376, B1581 and B1789) were found with the ability to potently inhibit HBV RNA, DNA, surface antigen (HBsAg), e antigen (HBeAg) and core antigen (HBcAg) expression in HBV genotypes A, B, C, D and I (a newly identified genotype) in Huh7 cells and in mice. No unusual cytotoxicity or off-target effects were noted.</p> <p>Conclusions</p> <p>Such siRNA suggests an alternate way of inhibiting various HBV genotypes in vitro and in vivo, promising advances in the treatment of HBV.</p
TLE3 represses colorectal cancer proliferation by inhibiting MAPK and AKT signaling pathways
Primer Sequences used for RT-qPCR (5â to 3â). (DOCX 13 kb
Immunosuppressive effect of compound K on islet transplantation in a STZ-induced diabetic mouse model
齐忠权,厦门大学医学院副院长、厦门大学器官移植研究所所长。Islet transplantation is a therapeutic option for type 1 diabetes, but its long-term success is limited by islet allograft survival. Many factors imperil islet survival, especially the adverse effects and toxicity due to clinical immunosuppressants. Compound (Cpd) K is a synthesized analog of highly unsaturated fatty acids from Isatis tinctoria L. (Cruciferae). Here we investigated the therapeutic effect of Cpd K in diabetic mice and found that it significantly prolonged islet allograft survival with minimal adverse effects after 10 days. Furthermore, it reduced the proportion of CD4(+) and CD8(+) T cells in spleen and lymph nodes, inhibited inflammatory cell infiltration in allografts, suppressed serum interleukin-2 and interferon-γ secretion, and increased transforming growth factor-β and Foxp3 mRNA expression. Surprisingly, Cpd K and rapamycin had a synergistic effect. Cpd K suppressed proliferation of naïve T cells by inducing T-cell anergy and promoting the generation of regulatory T cells. In addition, nuclear factor-κB signaling was also blocked. Taken together, these findings indicate that Cpd K may have a potential immunosuppressant effect on islet transplantation.
© 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.该项研究工作得到了国家科技部(973课题)、国家自然科学基金委等的经费支持
Tumor Suppression by RNA from C/EBPβ 3′UTR through the Inhibition of Protein Kinase Cε Activity
BACKGROUND: Since the end of last century, RNAs from the 3'untranslated region (3'UTR) of several eukaryotic mRNAs have been found to exert tumor suppression activity when introduced into malignant cells independent of their whole mRNAs. In this study, we sought to determine the molecular mechanism of the tumor suppression activity of a short RNA from 3'UTR of C/EBPβ mRΝΑ (C/EBPβ 3'UTR RNA) in human hepatocarcinoma cells SMMC-7721. METHODOLOGY/PRINCIPAL FINDINGS: By using Western blotting, immunocytochemistry, molecular beacon, confocal microscopy, protein kinase inhibitors and in vitro kinase assays, we found that, in the C/EBPβ 3'UTR-transfectant cells of SMMC-7721, the overexpressed C/EBPβ 3'UTR RNA induced reorganization of keratin 18 by binding to this keratin; that the C/EBPβ 3'UTR RNA also reduced phosphorylation and expression of keratin 18; and that the enzyme responsible for phosphorylating keratin 18 is protein kinase Cε. We then found that the C/EBPβ 3'UTR RNA directly inhibited the phosphorylating activity of protein kinase Cε; and that C/EBPβ 3'UTR RNA specifically bound with the protein kinase Cε-keratin 18 conjugate. CONCLUSION/SIGNIFICANCE: Together, these facts suggest that the tumor suppression in SMMC-7721 by C/EBPβ 3'UTR RNA is due to the inhibition of protein kinase Cε activity through direct physical interaction between C/EBPβ 3'UTR RNA and protein kinase Cε. These facts indicate that the 3'UTR of some eukaryotic mRNAs may function as regulators for genes other than their own
- …