17 research outputs found
The Effect of Thin Film Adhesives on Mode I Interlaminar Fracture Toughness in Carbon Fiber Composites with Shape Memory Alloy Inserts
Shape Memory Alloy (SMA) was placed within Polymer Matrix Composite (PMC) panels alongside film adhesives to examine bonding. Double cantilever beam (DCB) testing was performed using ASTM D5528. C-scanning was performed before testing, modal acoustic emissions (MAE) were monitored during testing, and microscopy performed post-test. Data was analyzed using modified beam theory (MBT), compliance calibration (CC) and modified compliance calibration (MCC) methods. Fracture toughness for control specimens was higher than previously reported due to fiber-bridging. Specimens with SMAs and adhesives stabilized crack propagation. Results revealed SMA-bridging; a phenomenon mimicking fiber-bridging which increased the load and fracture toughness of SMA specimens
The Effect of Thin Film Adhesives on Mode II Interlaminar Fracture Toughness in Carbon Fiber Composites with Shape Memory Alloy Inserts
A single sheet of nickel-titanium (NiTi) shape memory alloy (SMA) was introduced within an IM7/8552 polymer matrix composite (PMC) panel in conjunction with multiple thin film adhesives to promote the interfacial bond strength between the SMA and PMC. End notched flexure (ENF) testing was performed in accordance to ASTM D7905 method for evaluation of mode II interlaminar fracture toughness (GIIC) of unidirectional fiber-reinforced polymer matrix composites. Acoustic emissions (AE) were monitored during testing with two acoustic sensors attached to the specimens. The composite panels examined using scanning electron microscopy techniques after part failure. GIIC values for the control composite samples were found to be higher than those of samples with embedded SMA sheets. The presence of adhesives bonded to SMA sheets further diminished the GIIC values. AE values revealed poor bonding of the panels, with little to no signals during testing
Influence of Thin-Film Adhesives in Pullout Tests Between Nickel-Titanium Shape Memory Alloy and Carbon Fiber-Reinforced Polymer Matrix Composites
Strips of nickel-titanium (NiTi) shape memory alloy (SMA) and carbon fiber-reinforced polymer matrix composite (PMC) were bonded together using multiple thin film adhesives and their mechanical strengths were evaluated under pullout test configuration. Tensile and lap shear tests were conducted to confirm the deformation of SMAs at room temperature and to evaluate the adhesive strength between the NiTi strips and the PMC. Optical and scanning electron microscopy techniques were used to examine the interfacial bonding after failure. Simple equations on composite tensile elongation were used to fit the experimental data on tensile properties. ABAQUS models were generated to show the effects of enhanced bond strength and the distribution of stress in SMA and PMC. The results revealed that the addition of thin film adhesives increased the average adhesive strength between SMA and PMC while halting the room temperature shape memory effect within the pullout specimen
Effect of Thin-Film Adhesives on Mode II Interlaminar Fracture Toughness in Carbon Fiber Composites with Shape Memory Alloy Inserts
A single sheet of nickel-titanium (NiTi) shape memory alloy (SMA) was introduced within an IM7/8552 polymer matrix composite (PMC) panel in conjunction with multiple thin film adhesives to promote the interfacial bond strength between the SMA and PMC. End notched flexure (ENF) testing was performed in accordance to ASTM D7905 method for evaluation of mode II interlaminar fracture toughness (GIIC) of unidirectional fiber-reinforced polymer matrix composites. Acoustic emissions (AE) were monitored during testing with two acoustic sensors attached to the specimens. The composite panels were subjected to C-scan before testing, and examined using optical and scanning electron microscopy techniques after part failure. GIIC values for the control composite samples were found to be higher than those of samples with embedded SMA sheets. The presence of adhesives bonded to SMA sheets further diminished the GIIC values. AE values revealed poor bonding of the panels, with little to no signals during testing
Effect of Thin-Film Adhesives on Mode I Interlaminar Fracture Toughness in Carbon Fiber Composites with Shape Memory Alloy Inserts
A single sheet of NiTi shape memory alloy (SMA) was introduced within a unidirectional HexPly 8552/IM7 (Hexcel) polymer matrix composite (PMC) panel in conjunction with multiple thin-film adhesives to promote the interfacial bond strength between the SMA and PMC. A double cantilever beam (DCB) test was performed in accordance with the ASTM D5528 method for evaluation of Mode I interlaminar fracture toughness of unidirectional fiber-reinforced PMCs. The modal acoustic emissions (MAEs) were monitored during testing with two acoustic sensors attached to the specimens. The composite panels were subjected to a C-scan before testing and examined using optical and scanning electron microscopy (SEM) techniques after part failure. The data were used in conjunction with modified beam theory (MBT), the compliance calibration (CC) method, and the modified compliance calibration (MCC) method. The Mode I interlaminar toughness (G(sub IC)) values for control specimens were higher than previously reported and are attributed to extensive fiber bridging during testing. The presence of adhesives with SMA inserts stabilized crack propagation during DCB testing. The results reveal a new phenomenon of SMA bridging, whereby crack propagation would switch from one side of the SMA insert to the other, thus increasing the load and G(sub IC) values of specimens containing SMA
Comparison of Autoclave and Out-of-Autoclave Composites
The National Aeronautics and Space Administration (NASA) Exploration Systems Mission Directorate initiated an Advanced Composite Technology Project through the Exploration Technology Development Program in order to support the polymer composite needs for future heavy lift launch architectures. As an example, the large composite dry structural applications on Ares V inspired the evaluation of autoclave and out-of-autoclave (OOA) composite materials. A NASA and industry team selected the most appropriate materials based on component requirements for a heavy lift launch vehicle. Autoclaved and OOA composites were fabricated and results will highlight differences in processing conditions, laminate quality, as well as initial room temperature thermal and mechanical performance. Results from this study compare solid laminates that were both fiber-placed and hand-laid. Due to the large size of heavy-lift launch vehicle composite structures, there is significant potential that the uncured composite material or prepreg will experience significant out-life during component fabrication. Therefore, prepreg out-life was a critical factor examined in this comparison. In order to rigorously test material suppliers recommended out-life, the NASA/Industry team extended the out-time of the uncured composite prepreg to values that were approximately 50% beyond the manufacturers out-time limits. Early results indicate that the OOA prepreg composite materials suffered in both composite quality and mechanical property performance from their extended out-time. However, the OOA materials performed similarly to the autoclaved composites when processed within a few days of exposure to ambient "shop" floor handling. Follow on studies evaluating autoclave and OOA aluminum honeycomb core sandwich composites are planned
Polyimide Aerogels Cross-Linked through Amine Functionalized Polyoligomeric Silsesquioxane
We report the first synthesis of polyimide aerogels cross-linked through a polyhedral oligomeric silsesquioxane, octa(aminophenyl)silsesquioxane (OAPS). Gels formed from polyamic acid solutions of 3,3\u27,4,4\u27-biphenyltetracarboxylic dianhydride (BPDA), bisaniline-p-xylidene (BAX) and OAPS were chemically imidized and dried using supercritical CO(2) extraction to give aerogels having density around 0.1 g/cm(3). The aerogels are greater than 90 % porous, have high surface areas (230 to 280 m(2)/g) and low thermal conductivity (14 mW/m-K at room temperature). Notably, the polyimide aerogels cross-linked with OAPS have higher modulus than polymer reinforced silica aerogels of similar density and can be fabricated as both monoliths and thin films. Thin films of the aerogel are flexible and foldable making them an ideal insulation for space suits, and inflatable structures for habitats or decelerators for planetary re-entry, as well as more down to earth applications