41 research outputs found

    Effect of corrosion on the bond behavior of steel-reinforced, alkali-activated slag concrete

    Get PDF
    Alkali-activated slag concrete (ASC) is regarded as one of the most promising sustainable construction materials for replacing ordinary Portland cement concrete (OPC) due to its comparable strength and outstanding durability in challenging environments. In this study, the corrosion of steel bars embedded in ASC and OPC was studied by means of an electrically accelerated corrosion test of steel bars in concrete. Meanwhile, the bond performance of the corroded steel bars embedded in ASC was tested and compared with corresponding OPC groups. The results showed that ASC and OPC behaved differently in terms of bond deterioration. The high chemical resistance of ASC decreased the corrosion of steel bars and, thus, increased the residue bond strength and the bond stiffness. © 2023 by the authors

    Performance Analysis of an integrated Semi-TransparentThin Film PV Vacuum Insulated Glazing

    Get PDF
    TNottingham University, Department of his paper is intended to design and develop a thermal model of an integrated semitransparent thin-film PV vacuum glazing with four layers of glass called PV VG-4L. Correspondence to: Hasila Jarimi, The design of the glazing involves integration between a thin-film PV glazing with a double vacuum glazing both manufactured independently , and an additional layer of selfcleaning coated glass. For the mathematical model, the energy balance equations were derived for the thin-film PV glass, the glass panes of the vacuum glazing and the edges of the internal and external glass surfaces facing indoors and outdoors respectively . The model was numerically solved in MATLAB. To evaluate the performance of the PV VG-4L, the prototype was manufactured and investigated at lab-scale and also under real conditions. At lab-scale, experiments were conducted at steady-state conditions using a TEC driven calibrated hot box at Sustainable Energy Research Lab, University of Nottingham, UK. Meanwhile, outdoors, the prototype was tested at a research house at the University of Nottingham, UK. The developed model was then validated against the experimental results by direct comparison on the trend of the experimental and theoretical curves obtained, and also by conducting error analysis using root mean squared percentage deviation RMSPD method. When tested using the calibrated hot box, by following closely the ISO 12567 standards, the average measured total U-value is 0.6 W/m2K. From the analysis, the computed RMSPD value for the glazing surface temperature and the U-value are 4.75 % and 0.96% respectively. The RMPSD computed for the glazing surface temperatures, electrical power generated under real conditions and U-value are 2.58 %, 1.4% and 6.86 % respectively. The theoretical and experimental results are concluded to be in good agreement. The thermal and electrical performance of a building retrofitted with and without PV VG-4L was examined and discussed. At building efficiency level, the PV VG-4L not only can produce power, but it also has high insulating properties. The promising U-value implies that the glazing’s range of potential applications can be improved depending on the energy needs and applications, which includes its use in BIPV solar façades PV curtain walling for commercial buildings, greenhouses, skylights and conservatorie

    Performance of Updated Stress-Strain Index in Differentiating between Normal, Forme-Fruste, Subclinical and Clinical Keratoconic Eyes.

    Get PDF
    PurposeThis study seeks to evaluate the ability of the updated stress strain index (SSIv2) and other Corvis ST biomechanical parameters in distinguishing between keratoconus with different disease stages, and normal eyes.DesignDiagnostic accuracy analysis to distinguish disease stages.Methods1084 eyes were included and divided into groups of normal (199 eyes), forme fruste keratoconus (FFKC, 194 eyes), subclinical keratoconus (SKC, 113 eyes), mild clinical keratoconus (CKC-I, 175 eyes), moderate clinical keratoconus (CKC-II, 204 eyes) and severe clinical keratoconus (CKC-III, 199 eyes). Each eye was subjected to a Corvis ST examination to determine the central corneal thickness (CCT), biomechanically corrected intraocular pressure (bIOP), SSIv2 and other eight Corvis parameters including the SSIv1, SP-A1, A1T, ARTh, IIR, DAM, DARatio2 and CBI. The sensitivity and specificity of these parameters in diagnosing keratoconus were analyzed through receiver operating characteristic curves.ResultsBefore and after correction for CCT and bIOP, SSIv2 and ARTh were significantly higher, and IIR and CBI were significantly lower in the normal group than in the FFKC group, SKC group and the 3 CKC groups (all PConclusionCorvis ST's updated SSI demonstrated superior performance in differentiating between normal and keratoconic corneas, and between corneas with different keratoconus stages. Similar, but less pronounced, performance was demonstrated by the IIR, ARTh and CBI

    Off-line evaluation of indoor positioning systems in different scenarios: the experiences from IPIN 2020 competition

    Get PDF
    Every year, for ten years now, the IPIN competition has aimed at evaluating real-world indoor localisation systems by testing them in a realistic environment, with realistic movement, using the EvAAL framework. The competition provided a unique overview of the state-of-the-art of systems, technologies, and methods for indoor positioning and navigation purposes. Through fair comparison of the performance achieved by each system, the competition was able to identify the most promising approaches and to pinpoint the most critical working conditions. In 2020, the competition included 5 diverse off-site off-site Tracks, each resembling real use cases and challenges for indoor positioning. The results in terms of participation and accuracy of the proposed systems have been encouraging. The best performing competitors obtained a third quartile of error of 1 m for the Smartphone Track and 0.5 m for the Foot-mounted IMU Track. While not running on physical systems, but only as algorithms, these results represent impressive achievements.Track 3 organizers were supported by the European Union’s Horizon 2020 Research and Innovation programme under the Marie Skłodowska Curie Grant 813278 (A-WEAR: A network for dynamic WEarable Applications with pRivacy constraints), MICROCEBUS (MICINN, ref. RTI2018-095168-B-C55, MCIU/AEI/FEDER UE), INSIGNIA (MICINN ref. PTQ2018-009981), and REPNIN+ (MICINN, ref. TEC2017-90808-REDT). We would like to thanks the UJI’s Library managers and employees for their support while collecting the required datasets for Track 3. Track 5 organizers were supported by JST-OPERA Program, Japan, under Grant JPMJOP1612. Track 7 organizers were supported by the Bavarian Ministry for Economic Affairs, Infrastructure, Transport and Technology through the Center for Analytics-Data-Applications (ADA-Center) within the framework of “BAYERN DIGITAL II. ” Team UMinho (Track 3) was supported by FCT—Fundação para a Ciência e Tecnologia within the R&D Units Project Scope under Grant UIDB/00319/2020, and the Ph.D. Fellowship under Grant PD/BD/137401/2018. Team YAI (Track 3) was supported by the Ministry of Science and Technology (MOST) of Taiwan under Grant MOST 109-2221-E-197-026. Team Indora (Track 3) was supported in part by the Slovak Grant Agency, Ministry of Education and Academy of Science, Slovakia, under Grant 1/0177/21, and in part by the Slovak Research and Development Agency under Contract APVV-15-0091. Team TJU (Track 3) was supported in part by the National Natural Science Foundation of China under Grant 61771338 and in part by the Tianjin Research Funding under Grant 18ZXRHSY00190. Team Next-Newbie Reckoners (Track 3) were supported by the Singapore Government through the Industry Alignment Fund—Industry Collaboration Projects Grant. This research was conducted at Singtel Cognitive and Artificial Intelligence Lab for Enterprises (SCALE@NTU), which is a collaboration between Singapore Telecommunications Limited (Singtel) and Nanyang Technological University (NTU). Team KawaguchiLab (Track 5) was supported by JSPS KAKENHI under Grant JP17H01762. Team WHU&AutoNavi (Track 6) was supported by the National Key Research and Development Program of China under Grant 2016YFB0502202. Team YAI (Tracks 6 and 7) was supported by the Ministry of Science and Technology (MOST) of Taiwan under Grant MOST 110-2634-F-155-001

    Off-Line Evaluation of Indoor Positioning Systems in Different Scenarios: The Experiences From IPIN 2020 Competition

    Get PDF
    Every year, for ten years now, the IPIN competition has aimed at evaluating real-world indoor localisation systems by testing them in a realistic environment, with realistic movement, using the EvAAL framework. The competition provided a unique overview of the state-of-the-art of systems, technologies, and methods for indoor positioning and navigation purposes. Through fair comparison of the performance achieved by each system, the competition was able to identify the most promising approaches and to pinpoint the most critical working conditions. In 2020, the competition included 5 diverse off-site off-site Tracks, each resembling real use cases and challenges for indoor positioning. The results in terms of participation and accuracy of the proposed systems have been encouraging. The best performing competitors obtained a third quartile of error of 1 m for the Smartphone Track and 0.5 m for the Foot-mounted IMU Track. While not running on physical systems, but only as algorithms, these results represent impressive achievements.Track 3 organizers were supported by the European Union’s Horizon 2020 Research and Innovation programme under the Marie Skłodowska Curie Grant 813278 (A-WEAR: A network for dynamic WEarable Applications with pRivacy constraints), MICROCEBUS (MICINN, ref. RTI2018-095168-B-C55, MCIU/AEI/FEDER UE), INSIGNIA (MICINN ref. PTQ2018-009981), and REPNIN+ (MICINN, ref. TEC2017-90808-REDT). We would like to thanks the UJI’s Library managers and employees for their support while collecting the required datasets for Track 3. Track 5 organizers were supported by JST-OPERA Program, Japan, under Grant JPMJOP1612. Track 7 organizers were supported by the Bavarian Ministry for Economic Affairs, Infrastructure, Transport and Technology through the Center for Analytics-Data-Applications (ADA-Center) within the framework of “BAYERN DIGITAL II. ” Team UMinho (Track 3) was supported by FCT—Fundação para a Ciência e Tecnologia within the R&D Units Project Scope under Grant UIDB/00319/2020, and the Ph.D. Fellowship under Grant PD/BD/137401/2018. Team YAI (Track 3) was supported by the Ministry of Science and Technology (MOST) of Taiwan under Grant MOST 109-2221-E-197-026. Team Indora (Track 3) was supported in part by the Slovak Grant Agency, Ministry of Education and Academy of Science, Slovakia, under Grant 1/0177/21, and in part by the Slovak Research and Development Agency under Contract APVV-15-0091. Team TJU (Track 3) was supported in part by the National Natural Science Foundation of China under Grant 61771338 and in part by the Tianjin Research Funding under Grant 18ZXRHSY00190. Team Next-Newbie Reckoners (Track 3) were supported by the Singapore Government through the Industry Alignment Fund—Industry Collaboration Projects Grant. This research was conducted at Singtel Cognitive and Artificial Intelligence Lab for Enterprises (SCALE@NTU), which is a collaboration between Singapore Telecommunications Limited (Singtel) and Nanyang Technological University (NTU). Team KawaguchiLab (Track 5) was supported by JSPS KAKENHI under Grant JP17H01762. Team WHU&AutoNavi (Track 6) was supported by the National Key Research and Development Program of China under Grant 2016YFB0502202. Team YAI (Tracks 6 and 7) was supported by the Ministry of Science and Technology (MOST) of Taiwan under Grant MOST 110-2634-F-155-001.Peer reviewe

    Trade policy review of Singapore

    No full text
    As a small open economy with almost no natural resources, Singapore is highly dependent on international trade. This paper reviews the eighth Trade Policy Review of Singapore published by World Trade Organisation (WTO) in 2021. We first begin with Singapore's trade policies that shape it as a trusted and leading node in both global supply chains and financial sectors. We then focus on its transformation to a digital economy and important Free Trade Agreements (FTAs). Lastly, policymakers should keep monitoring other potential issues such as shortage of labour and ageing population to ensure sustainable economic growth of Singapore in the long run

    Zhongguo yu ye shi

    No full text

    Zhongguo yu ye shi

    No full text

    Amino Acid-Assisted Sand-Milling Exfoliation of Boron Nitride Nanosheets for High Thermally Conductive Thermoplastic Polyurethane Composites

    No full text
    Boron nitride nanosheets (BNNSs) show excellent thermal, electrical, optical, and mechanical properties. They are often used as fillers in polymers to prepare thermally conductive composites, which are used in the production of materials for thermal management, such as electronic packaging. Aside from the van der Waals force, there are some ionic bond forces between hexagonal boron nitride (h-BN) layers that result in high energy consumption and make BNNSs easily agglomerate. To overcome this issue, L-lysine (Lys) was first employed as a stripping assistant for preparing graft-functionalized BNNSs via mechanical sand-milling technology, and the obtained Lys@BNNSs can be added into thermoplastic polyurethane (TPU) by solution mixing and hot-pressing methods to prepare thermally conductive composites. This green and scalable method of amino acid-assisted sand-milling can not only exfoliate the bulk h-BN successfully into few-layer BNNSs but also graft Lys onto the surface or edges of BNNSs through Lewis acid–base interaction. Furthermore, benefiting from Lys’s highly reactive groups and biocompatibility, the compatibility between functionalized BNNSs and the TPU matrix is significantly enhanced, and the thermal conductivity and mechanical properties of the composite are remarkably increased. When the load of Lys@BNNSs is 3 wt%, the thermal conductivity and tensile strength of the obtained composites are 90% and 16% higher than those of the pure TPU, respectively. With better thermal and mechanical properties, Lys@BNNS/TPU composites can be used as a kind of heat dissipation material and have potential applications in the field of thermal management materials

    Bond Performance of Steel Bar and Fly Ash-Based Geopolymer Concrete in Beam End Tests

    No full text
    This paper presents a comprehensive investigation of the bond characteristics of steel bar reinforced geopolymer concrete (GPC). The ASTM A944 beam end tests were conducted on GPC beams reinforced with plain or ribbed bars. The bond–slip curves and the bond strength of GPC beams were obtained. The relationship between the bond stress and relative slip in plain and ribbed bar reinforced GPC has been represented by empirical formulae. The bond testing results were compared with those of corresponding ordinary Portland cement concrete (OPC) using statistical hypothesis tests. The results of hypothesis testing showed that GPC was significantly superior to OPC in terms of bond capability with plain bars and bond stiffness with ribbed bars. The statistical analysis indicated that the bond–slip relations derived for OPC are inapplicable to GPC; thus, new bond–slip relations are suggested to estimate the development of bond stress and relative slip between GPC and steel bars
    corecore