43 research outputs found

    Aggregation-Induced Emission (AIE), Life and Health

    Get PDF
    Light has profoundly impacted modern medicine and healthcare, with numerous luminescent agents and imaging techniques currently being used to assess health and treat diseases. As an emerging concept in luminescence, aggregation-induced emission (AIE) has shown great potential in biological applications due to its advantages in terms of brightness, biocompatibility, photostability, and positive correlation with concentration. This review provides a comprehensive summary of AIE luminogens applied in imaging of biological structure and dynamic physiological processes, disease diagnosis and treatment, and detection and monitoring of specific analytes, followed by representative works. Discussions on critical issues and perspectives on future directions are also included. This review aims to stimulate the interest of researchers from different fields, including chemistry, biology, materials science, medicine, etc., thus promoting the development of AIE in the fields of life and health

    Edwardsiella Comparative Phylogenomics Reveal the New Intra/Inter-Species Taxonomic Relationships, Virulence Evolution and Niche Adaptation Mechanisms

    Get PDF
    Edwardsiella bacteria are leading fish pathogens causing huge losses to aquaculture industries worldwide. E. tarda is a broad-host range pathogen that infects more than 20 species of fish and other animals including humans while E. ictaluri is host-adapted to channel catfish causing enteric septicemia of catfish (ESC). Thus, these two species consist of a useful comparative system for studying the intricacies of pathogen evolution. Here we present for the first time the phylogenomic comparisons of 8 genomes of E. tarda and E. ictaluri isolates. Genome-based phylogenetic analysis revealed that E. tarda could be separate into two kinds of genotypes (genotype I, EdwGI and genotype II, EdwGII) based on the sequence similarity. E. tarda strains of EdwGI were clustered together with the E. ictaluri lineage and showed low sequence conservation to E. tarda strains of EdwGII. Multilocus sequence analysis (MLSA) of 48 distinct Edwardsiella strains also supports the new taxonomic relationship of the lineages. We identified the type III and VI secretion systems (T3SS and T6SS) as well as iron scavenging related genes that fulfilled the criteria of a key evolutionary factor likely facilitating the virulence evolution and adaptation to a broad range of hosts in EdwGI E. tarda. The surface structure-related genes may underlie the adaptive evolution of E. ictaluri in the host specification processes. Virulence and competition assays of the null mutants of the representative genes experimentally confirmed their contributive roles in the evolution/niche adaptive processes. We also reconstructed the hypothetical evolutionary pathway to highlight the virulence evolution and niche adaptation mechanisms of Edwardsiella. This study may facilitate the development of diagnostics, vaccines, and therapeutics for this under-studied pathogen

    Genome Sequence of the Versatile Fish Pathogen Edwardsiella tarda Provides Insights into its Adaptation to Broad Host Ranges and Intracellular Niches

    Get PDF
    BACKGROUND:Edwardsiella tarda is the etiologic agent of edwardsiellosis, a devastating fish disease prevailing in worldwide aquaculture industries. Here we describe the complete genome of E. tarda, EIB202, a highly virulent and multi-drug resistant isolate in China. METHODOLOGY/PRINCIPAL FINDINGS:E. tarda EIB202 possesses a single chromosome of 3,760,463 base pairs containing 3,486 predicted protein coding sequences, 8 ribosomal rRNA operons, and 95 tRNA genes, and a 43,703 bp conjugative plasmid harboring multi-drug resistant determinants and encoding type IV A secretion system components. We identified a full spectrum of genetic properties related to its genome plasticity such as repeated sequences, insertion sequences, phage-like proteins, integrases, recombinases and genomic islands. In addition, analysis also indicated that a substantial proportion of the E. tarda genome might be devoted to the growth and survival under diverse conditions including intracellular niches, with a large number of aerobic or anaerobic respiration-associated proteins, signal transduction proteins as well as proteins involved in various stress adaptations. A pool of genes for secretion systems, pili formation, nonfimbrial adhesions, invasions and hemagglutinins, chondroitinases, hemolysins, iron scavenging systems as well as the incomplete flagellar biogenesis might feature its surface structures and pathogenesis in a fish body. CONCLUSION/SIGNIFICANCE:Genomic analysis of the bacterium offered insights into the phylogeny, metabolism, drug-resistance, stress adaptation, and virulence characteristics of this versatile pathogen, which constitutes an important first step in understanding the pathogenesis of E. tarda to facilitate construction of a practical effective vaccine used for combating fish edwardsiellosis

    An evaluation of different landscape design scenarios to improve outdoor thermal comfort in Shenzhen

    No full text
    The pivotal role of urban greening in landscape design for mitigating climate change and enhancing the thermal environment is widely known. However, numerous evaluations of outdoor thermal comfort are seldom applied within the realm of landscape design scenarios. This study explores the relationship between street design and urban microclimate, aiming to propose a range of design strategies that can significantly improve thermal comfort within the street environment in Shenzhen, China. These design strategies hold immense potential for urban greening implementation and provide valuable insights to enhance the overall thermal quality of streetscapes in subtropical cities. The study employs landscape design and environmental simulation methods to evaluate the different design scenarios for the streetscape. The landscape design encompasses three scenarios with revised interventions: 1. the incorporation of building greening and enhanced pavement material albedo; 2. the introduction of trees and grass at the ground level; and 3. a combination of scenarios 1 and 2. Environmental simulations are utilized to assess the effectiveness of each design scenario. The findings reveal that increasing urban vegetation leads to a reduction in urban heat and significantly improves outdoor thermal comfort. Moreover, the incorporation of shade-providing trees proves to be more efficacious than employing vertical greening in alleviating outdoor thermal discomfort.<br/

    FENDRR: A pivotal, cancer-related, long non-coding RNA

    No full text
    Long non-coding RNAs (lncRNAs) have more than 200 nucleotides and do not encode proteins. Based on numerous studies, lncRNAs have emerged as new and crucial regulators of biological function and have been implicated in the pathogenesis of a variety of diseases, especially cancers. Specific lncRNAs have been identified as novel molecular biomarkers for cancer diagnosis, prognosis, and treatment efficacy. Fetal-lethal non-coding developmental regulatory RNA (FENDRR, also known as FOXF1-AS1) is a novel lncRNA that is located at chr3q13.31 and has four exons and 3099 nucleotides, and its genomic site is located at chr3q13.31. FENDRR is abnormally expressed in a variety of cancers and is significantly associated with different clinical characteristics. In addition, FENDRR has shown potential as a biomarker for cancer diagnosis, prognosis, and treatment. In this review, we summarize the current understanding of FENDRR and its mechanistic role in cancer progression. We also discuss recent insights into the clinical significance of FENDRR for cancer diagnosis, prognosis, and treatment

    Promising role of long non-coding RNA PCAT6 in malignancies

    No full text
    Long non-coding RNAs (lncRNAs), a newly identified class of non-coding RNA (ncRNA), are defined as RNA molecules at least 200 nucleotides in length that are not translated into proteins. LncRNAs contribute to a wide range of biological processes and are master regulators of disease occurrence, development, and response to therapy in human malignancies. The lncRNA prostate cancer‑associated transcript 6 (PCAT6) is upregulated in various human malignancies, including lung cancer, hepatocellular carcinoma, cervical cancer, osteosarcoma, glioblastoma, colorectal cancer, breast cancer, gastric cancer, gastrointestinal stromal tumors, and pancreatic ductal adenocarcinoma. High expression of PCAT6 is closely correlated with aggressive clinicopathological characteristics and poor prognosis in cancer patients, suggesting it is an oncogenic lncRNA. PCAT6 overexpression also facilitates cell proliferation, invasion, and migration while attenuating apoptosis, indicating that it might serve as a new prognostic biomarker and therapeutic target for malignancies. Here, we discuss the molecular mechanisms, regulatory functions, and potential clinical applications of PCAT6 in cancer

    Study on the Frost Resistance of Composite Limestone Powder Concrete against Coupling Effects of Sulfate Freeze–Thaw

    No full text
    Concrete in saline or coastal settings exposed to freezing temperatures is frequently affected by coupling actions of sulfate assault and freeze–thaw degradation, reducing the service life of concrete structures significantly. This study conducted an accelerated freeze–thaw cycle test in pure water and Na2SO4 solution with a mass proportion of 5% to examine the coupling impact of sulfate freeze–thaw on the frost resistance of composite limestone powder (CLP) concrete. Combined with SEM and XRD methods, the performance degradation mechanisms of composite limestone powder (CLP) concrete in coupling sulfate freeze–thaw conditions were analyzed with a microscopic point of view. The findings demonstrated that limestone powder has a filling effect but the activity is low. When the content is 10~20%, the chemical response is higher than the physical response. The pozzolanic effect of fly ash and slag can improve the pore structure and improve the compactness of concrete. The “superposition effect” of limestone powder, fly ash, and slag can improve the frost resistance of CLP concrete. The scenario of salt freezing cycles has negative effects that are worse than those of water freezing cycles on the antifreeze performance of CLP concrete, including apparent morphology, mass loss, relative dynamic modulus of elasticity, and compressive strength. Sulfate’s activation effect boosts slag’s activity effect, which significantly promotes the antifreeze performance of concrete subjected to salt frozen cycles over water frozen cycles. The freeze–thaw damage model of CLP concrete under coupling sulfate freeze–thaw is established through theorem analysis and experiment statistics, laying a theoretical framework for the popularization and use of this concrete
    corecore