362 research outputs found

    3-Allyl-1-(2-cyano­benz­yl)-2-methyl­benzimidazol-3-ium bromide

    Get PDF
    In the title compound, C19H18N3 +·Br−, both the allyl and cyano­phenyl groups are approximately perpendicular to the central benzimidazole unit, making dihedral angles of 89.7 (2) and 85.09 (13)°, respectively. The crystal packing is dominated by C—H⋯Br inter­actions, with each anion inter­acting with five neighboring cations

    3-Allyl-1-(3-cyano­phenyl­methyl­ene)-2-methyl-1H-benzoimidazol-3-ium bromide monohydrate

    Get PDF
    In the title compound, C19H18N3 +·Br−·H2O, the dihedral angle between the allyl group and the imidazole ring is 89.59 (14)°, while the dihedral angle between the cyanophenyl ring and the imidazole ring is 78.72 (7)°. O—H⋯Br hydrogen bonds form an infinite chain in the c-axis direction and C—H⋯Br and C—H⋯O inter­actions expand this chain into an infinite three-dimensional network

    Inflammation and nerve injury induce expression of pancreatitis-associated protein-II in primary sensory neurons

    Get PDF
    Pancreatitis-associated protein (PAP)-I and -II, lectin-related secretory proteins, are members of the regenerating gene (Reg) family. Although expression of PAP-I was found in the dorsal root ganglion (DRG) neurons following peripheral nerve injury and cystitis, whether PAP-II could be expressed in DRG neurons in chronic pain models remains unclear. The present study shows an inflammation- and nerve injury-triggered expression of PAP-II in rat DRG neurons. In situ hybridization showed that only a few DRG neurons normally contained PAP-I and -II mRNAs. After peripheral inflammation, PAP-I and -II mRNAs were present in over half of small DRG neurons. Such an elevated expression of PAP-I and -II reached the peak level on the second day. Immunostaining showed that the expression of PAP-II was mostly increased in the isolectin B4-positive subset of small DRG neurons after inflammation. Furthermore, the expression of PAP-II was also induced in DRG neurons after peripheral nerve injury. Interestingly, PAP-II expression was shifted from small neurons on day 2 to large DRG neurons that expressed neuropeptide Y during the later post-injury days. These results suggest that PAP-II may play potential roles in the modulation of spinal sensory pathways in pathological pain states

    Facile sand enhanced electro-flocculation for cost-efficient harvesting of Dunaliella salina

    Get PDF
    通讯作者地址: Jia, LSEnergy consumption and water resource in the cultivation and harvesting steps still need to be minimized for the popularization of the microalgae-based products. An efficient electro-flocculation method for harvesting Dunaliella Salina integrated with local sand has been successfully applied. Sand was effective for speeding up the processes of flocculation and sedimentation of algal flocs and the electrolytic hydroxides was essential to bridge the sand and small flocs into large dense flocs. The maximal recovery effective improved from 95.13% in 6 min to 98.09% in 4.5 min and the optimal electrical energy consumption decreased 51.03% compared to conventional electro-flocculation in a laboratory ambient condition. Furthermore, reusing the flocculated medium in cultivation of the D. Salina with nitrogen supplemented performed no worse than using fresh medium. This sand enhanced electro-flocculation (SEF) technology provides a great potential for saving time and energy associated with improving microalgae harvesting.Xiamen Southern Oceanographic Center of Fujian Province of China 14CZP046HJ20 talents introduction project of Shenzhen City Science and Technology R&D funds recruit research of China ZYD201111080010

    Geographical and epidemiological characteristics of sporadic coronavirus disease 2019 outbreaks from June to December 2020 in China: an overview of environment-to-human transmission events

    Get PDF
    China quickly brought the severe acute respiratory syndrome coronavirus 2 under control during the early stage of 2020; thus, this generated sufficient confidence among the public, which enabled them to respond to several sporadic coronavirus disease 2019 outbreaks. This article presents geographical and epidemiological characteristics of several sporadic coronavirus disease 2019 outbreaks from June to December 2020 in China. The data show that the coronavirus disease may be transmitted by imported cold-chain food and international exchange, and this viewpoint deserves our great attention

    The Transitions Between Dynamic Micro-States Reveal Age-Related Functional Network Reorganization

    Get PDF
    Normal dynamic change in human brain occurs with age increasing, yet much remains unknown regarding how brain develops, matures, and ages. Functional connectivity analysis of the resting-state brain is a powerful method for revealing the intrinsic features of functional networks, and micro-states, which are the intrinsic patterns of functional connectivity in dynamic network courses, and are suggested to be more informative of brain functional changes. The aim of this study is to explore the age-related changes in these micro-states of dynamic functional network. Three healthy groups were included: the young (ages 21–32 years), the adult (age 41–54 years), and the old (age 60–86 years). Sliding window correlation method was used to construct the dynamic connectivity networks, and then the micro-states were individually identified with clustering analysis. The distribution of age-related connectivity variations in several intrinsic networks for each micro-state was analyzed then. The micro-states showed substantial age-related changes in the transitions between states but not in the dwelling time. Also there was no age-related reorganization observed within any micro-state. But there were reorganizations observed in the transition between them. These results suggested that the identified micro-states represented certain underlying connectivity patterns in functional brain system, which are similar to the intrinsic cognitive networks or resources. In addition, the dynamic transitions between these states were probable mechanisms of reorganization or compensation in functional brain networks with age increasing

    AoI-minimal Power Adjustment in RF-EH-powered Industrial IoT Networks : A Soft Actor-Critic-Based Method

    Get PDF
    This paper investigates the radio-frequency-energy-harvesting-powered (RF-EH-powered) wireless Industrial Internet of Things (IIoT) networks, where multiple sensor nodes (SNs) are first powered by a wireless power station (WPS), and then collect status updates from the industrial environment and finally transmit the collected data to the monitor with their harvested energy. To enhance the timeliness of data, age of information (AoI) is used as a metric to optimize the system. Particularly, an expected sum AoI (ESA) minimization problem is formulated by optimizing the power adjustment policy for the SNs under multiple practical constraints, including the EH, the minimal signal-to-noise-plus-interference ratio (SINR) and the battery capacity constraints. To solve the non-convex problem with no explicit AoI expression, we transform it into a Markov decision problem (MDP) with continuous state space and action space. Then, inspired by the Soft Actor-Critic (SAC) framework in deep reinforcement learning, a SAC-based age-aware power adjustment (SAPA) method is proposed by modeling the power adjustment as a stochastic strategy. Furthermore, to reduce the communication overhead of SAPA, a multi-agent version of SAPA, i.e., MSAPA, is proposed, with which each SN is able to adjust its transmit power based on its local observations. The communication overhead of SAPA and MSAPA is also analyzed theoretically. Simulation results show that the proposed SAPA and MSAPA converge well with different numbers of SNs. It is also shown that the ESA achieved by the proposed SAPA and MSAPA is lower than that achieved by the baseline methods

    Physics-data-driven intelligent optimization for large-scale meta-devices

    Full text link
    Meta-devices have gained significant attention and have been widely utilized in optical systems for focusing and imaging, owing to their lightweight, high-integration, and exceptional-flexibility capabilities. However, based on the assumption of local phase approximation, traditional design method neglect the local lattice coupling effect between adjacent meta-atoms, thus harming the practical performance of meta-devices. Using physics-driven or data-driven optimization algorithms can effectively solve the aforementioned problems. Nevertheless, both of the methods either involve considerable time costs or require a substantial amount of data sets. Here, we propose a physics-data-driven approach based "intelligent optimizer" that enables us to adaptively modify the sizes of the studied meta-atom according to the sizes of its surrounding ones. Such a scheme allows to mitigate the undesired local lattice coupling effect, and the proposed network model works well on thousands of datasets with a validation loss of 3*10-3. Experimental results show that the 1-mm-diameter metalens designed with the "intelligent optimizer" possesses a relative focusing efficiency of 93.4% (as compared to ideal focusing) and a Strehl ratio of 0.94. In contrast to the previous inverse design method, our method significantly boosts designing efficiency with five orders of magnitude reduction in time. Our design approach may sets a new paradigm for devising large-scale meta-devices.Comment: manuscripts:19 pages, 4 figures; Supplementary Information: 11 pages, 12 figure

    Research progress in delineating the pathological mechanisms of GJB2-related hearing loss

    Get PDF
    Hearing loss is the most common congenital sensory impairment. Mutations or deficiencies of the GJB2 gene are the most common genetic cause of congenital non-syndromic deafness. Pathological changes such as decreased potential in the cochlea, active cochlear amplification disorders, cochlear developmental disorders and macrophage activation have been observed in various GJB2 transgenic mouse models. In the past, researchers generally believed that the pathological mechanisms underlying GJB2-related hearing loss comprised a K+ circulation defect and abnormal ATP-Ca2+ signals. However, recent studies have shown that K+ circulation is rarely associated with the pathological process of GJB2-related hearing loss, while cochlear developmental disorders and oxidative stress play an important, even critical, role in the occurrence of GJB2-related hearing loss. Nevertheless, these research has not been systematically summarized. In this review, we summarize the pathological mechanisms of GJB2-related hearing loss, including aspects of K+ circulation, developmental disorders of the organ of Corti, nutrition delivery, oxidative stress and ATP-Ca2+ signals. Clarifying the pathological mechanism of GJB2-related hearing loss can help develop new prevention and treatment strategies
    corecore