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Normal dynamic change in human brain occurs with age increasing, yet much remains
unknown regarding how brain develops, matures, and ages. Functional connectivity
analysis of the resting-state brain is a powerful method for revealing the intrinsic
features of functional networks, and micro-states, which are the intrinsic patterns of
functional connectivity in dynamic network courses, and are suggested to be more
informative of brain functional changes. The aim of this study is to explore the age-
related changes in these micro-states of dynamic functional network. Three healthy
groups were included: the young (ages 21–32 years), the adult (age 41–54 years), and
the old (age 60–86 years). Sliding window correlation method was used to construct
the dynamic connectivity networks, and then the micro-states were individually identified
with clustering analysis. The distribution of age-related connectivity variations in several
intrinsic networks for each micro-state was analyzed then. The micro-states showed
substantial age-related changes in the transitions between states but not in the dwelling
time. Also there was no age-related reorganization observed within any micro-state.
But there were reorganizations observed in the transition between them. These results
suggested that the identified micro-states represented certain underlying connectivity
patterns in functional brain system, which are similar to the intrinsic cognitive networks
or resources. In addition, the dynamic transitions between these states were probable
mechanisms of reorganization or compensation in functional brain networks with age
increasing.

Keywords: dynamic functional connectivity, normal aging, micro-state, resting-state fMRI, network
reorganization

INTRODUCTION

Normalbrain aging refers to the degradative phenomena that occurs in brain structure, function
and morphology with age increasing and manifests as a certain degree of brain dysfunction in
elderly populations (Hedden and Gabrieli, 2004; Whalley et al., 2004). As the aging population
issue is becoming increasingly serious, diseases characterized by cognitive dysfunction, such
as Alzheimer’s disease (AD), Parkinson’s (PD) and other neurodegenerative diseases, are also
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increasing at an unprecedented rate (Reeve et al., 2014; Xu et al.,
2015). Currently, the mechanism of aging and even how our brain
changes during aging are not clear.

Traditionally, resting-state functional connectivity, derived
from the blood oxygenation level dependent (BOLD) signal
over an entire scan (5 min or longer), was considered to be
constant throughout the entire scan time. However, research has
shown temporal dynamics of functional connectivity in resting
state (Chang and Glover, 2010; Hutchison et al., 2013a; Feng
et al., 2015; Leonardi and Van De Ville, 2015). This kind of
dynamic functional connectivity, which varies over a matter
of seconds, may be highly related to unconstrained mental
activities (Hutchison et al., 2013b; Allen et al., 2014; Zalesky
et al., 2014), as well as to neurologic diseases (Kaiser et al.,
2015; Mayer et al., 2015; Braun et al., 2016; Wee et al., 2016).
The time-varying functional connectivity derived from sliding
window correlation, which reflects the dynamics of functional
brain networks, is also expected to facilitate our understanding
of the mechanisms of aging process. Qin et al. (2015) used
amplitude of low-frequency fluctuations (ALFF) in dynamic
functional connectivity to predict individual brain maturity in
adolescents between 7 and 30 years of age and found that the
internetwork exhibited substantial dynamic interaction changes
that were highly associated with brain maturation. Chen et al.
(2017) used dynamic functional connectivity (FCV) method
to obtain index of dynamic functional connectivity variability
and found that the variation of the spontaneous fluctuations in
functional connectivity was highly related to brain aging process.
However, these indexes of dynamic functional connectivity were
time-averaged features that could not capture the connectivity
patterns of the spontaneous fluctuations.

Recent studies have shown that connectivity dynamics can
be captured as recurring patterns of connectivity or interactions
among intrinsic networks during both tasks and resting
(Hutchison et al., 2013a,b; Allen et al., 2014; Calhoun et al., 2014).
In some studies (Allen et al., 2014; Calhoun et al., 2014; Rashid
et al., 2014; Gonzalez-Castillo et al., 2015), these series of inherent
functional connectivity patterns were called micro-states. The
existence of micro-states of neural activity, which appeared early
in electrophysiological studies (Lehmann, 1990; Pascual-Marqui,
1995), was also considered a probable interpretation for the
spontaneous fluctuations in functional connectivity. Allen et al.
(2014) firstly described a data-driven approach to reveal these
functional states and suggested that the time-varying aspects of
functional states can unveil the functional coordination among
different neural systems. Many recent studies supported this
claim and reported positive evidence that the functional micro-
states could provide valuable insights into the pathophysiological
changes of the brain (Rashid et al., 2014; Gonzalez-Castillo et al.,
2015; Du et al., 2016).

Prior studies revealed functional decline and compensation in
human brain occurring with normal aging (Reuter-Lorenz and
Campbell, 2008). In fact, with age increasing, brain functional
connectivity or networks also show dynamic changes (Park
and McDonough, 2013). For example, in aging individuals, the
primary perceptual system declines, and higher-order cognitive
systems are recruited to offset deficits in sensory processing

(Davis et al., 2008; Vinette and Bray, 2015); the decay in the
default mode network can lead to decreased anticorrelations
and increased regulation from the frontoparietal control system
(Grady et al., 2016; Spreng et al., 2016). These results indicates
that frequent changes in internetwork interactions and some
connectivity transition patterns are associated with aging. We
expected that the dynamic changes between connectivity states
could offer important insights related to understanding the
functional reorganizations that occurs with aging. Considering
that the functional connectivity patterns reoccur across windows
and subjects, they would likely provide valuable insight regarding
both the mechanism of functional connectivity fluctuations
on the scale of seconds and the intrinsic reorganizations of
functional networks that occurs during aging.

The aim of this study was to reveal that how brain
dynamic functional networks change with age increasing.
We first applied K-means clustering to extract the common
functional connectivity states and then extracted the connectivity
states for each subject. We evaluated the differences in the
dynamic connectivity patterns between groups, including the
young group, the adult group and the old group. Our
major goals involved the following aspects: (1) whether the
temporal transitions among functional micro-states alter with
age increasing; (2) whether there exists certain specific intrinsic
connectivity pattern that functional states exhibit during
the aging process; and (3) whether the three different age
groups would demonstrate differing strengths of the functional
connectivity states.

MATERIALS AND METHODS

Participants
Experimental data on 86 healthy subjects were obtained from
an open database, namely, the Nathan Kline Institute Rockland
Sample (NKI-RS), published by the Nathan Kline Institute1. All
approvals and procedures for collection and sharing of data
were approved by the NKI institutional review board, and each
participant was gave written informed consent. We divided the
subjects into three groups: the young group (Y: n = 31, mean
age = 26.2 years, range = 21–32 years), the adult group (A: n = 28,
mean age = 46.1 years, range = 41–54 years), and the old group
(O: n = 27, mean age = 68.4 years, range = 60–86 years). There
were significant differences in age but not in gender or hand
dominance.

Data Acquisition
All the data were obtained using a Siemens 3.0 T Trio
Tim magnetic resonance scanner, approved by the relevant
institutional review board, using an echo-planar imaging (EPI)
sequence. During scanning, all subjects were asked to maintain
a resting state, that is, to stay relaxed with their eyes closed, to
move as little as possible, and to not engage in any brain activities.
The scanning parameter settings of the resting-state fMRI were as
follows: repetition time (TR) = 2500 ms, echo time (TE) = 30 ms,

1http://fcon_1000.projects.nitrc.org/indi/pro/nki.html
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flip angle (FA) = 80, field of view (FOV) = 216 mm × 216 mm,
voxel size = 3 mm× 3 mm× 3 mm, slices = 38, scan time = 650 s,
and time points = 260. All participants also underwent a 3D high-
resolution T1 sequence: TR = 2500 ms, TE = 3.5 ms, FA = 8◦,
FOV = 256 mm× 256 mm, resolution = 1 mm× 1 mm× 1 mm,
and 192 slices.

Data Pre-processing
The data need to be pre-processed to eliminate the noise caused
by head movement, respiration and other factors with DPABI
v3.1 (Yan et al., 2016; a toolbox for Data Processing and Analysis
for Brain Imaging2) with is fMRI processing platform based on
SPM (Statistical Parametric Mapping3) embedded in MATLAB.
First, to ensure that the magnetization reached a steady state
and that the subjects adapted to the scanning environment, the
first four timepoints of each fMRI scan were discarded. The
remaining 256 timepoints were corrected for the time layer. After
this correction, all layers were estimated as being obtained at the
same time. Taking into account that subjects will unconsciously
move their heads, the head motion of the subjects was estimated
with Friston 24-parameter correction (Yan et al., 2013). Then,
nuisance terms were removed from the resting-state BOLD
time series through multiple linear regression. These nuisance
regressors included: linear and quadratic trends, 24 motion
parameters estimated during image co-registration, and the mean
BOLD signal calculated from WM and CSF regions, where these
regions were defined using partial volume thresholds of 0.99 for
each tissue type and erosion of two voxels in each direction to
minimize partial voluming with gray matter. Then, the fMRI
data were warped to the Montreal Neurological Institute (MNI-
152) template and resampled to 3 mm × 3 mm × 3 mm
isotropic voxels. In this paper, we used a 0.01–0.08 Hz bandpass
filter to obtain extremely low-frequency neural signals, as it
is generally believed that the functional magnetic resonance
signals in this frequency band best reflect neural activity. Finally,
spatial smoothing was performed with a Gaussian filter kernel
(FWHM = 6 mm) to reduce registration errors and individual
differences between subjects. All the subjects were checked for
head motion; the mean displacement was <2.5 mm and the
mean rotation was <2.5◦. Any subject with bigger displacement
or rotation, If only for one volume ever the scan time, has
been removed. There was no significant difference in mean head
motion between groups based on the subject-averaged framewise
displacement (FD) measurement (Power et al., 2011; Yan et al.,
2013) : Y = 0.090 ± 0.037; A = 0.091 ± 0.028; O = 0.10 ± 0.036;
ANOVA test: F(2, 85) = 1.890; P = 0.339.

Dynamic Functional Connectivity
Networks were defined in the Montreal Neurological Institute
(MNI) space according to Dosenbach et al. (2011), including
160 regions and six intrinsic sub-networks: the CON (cingulo-
opercular network), DMN (default mode network), FPN
(frontoparietal network), OCC (occipital network), SMN
(sensorimotor network), and CER (cerebellar network). The

2http://rfmri.org/dpabi
3https://www.fil.ion.ucl.ac.uk/spm/

BOLD signals of all voxels in each region, defined using a
spherical region of interest (ROI) with a diameter of 10 mm, were
averaged and extracted. A functional connectivity (FC) matrix
was then estimated with the Fisher Z-transformed Pearson
correlations of the BOLD signals between paired regions.

Sliding window correlation method (Sakoglu et al., 2010;
Di and Biswal, 2013; Hutchison et al., 2013a) is a widely
applied technique to observe the functional dynamics. Using
this method, a functional connectivity matrix is calculated for
every short window, which slides along the scanning time. Then,
in this study, the dynamic FC was estimated using the sliding
window correlation method, and 160 × 160 × N FC matrix
sequences were obtained for each subject. We used a fixed-
length rectangular window (width = 24 × TR = 60 s; thus,
N = 232), and the window was shifted by one TR. The Fisher
Z-transformed Pearson correlations were also used here for the
FC. The calculating of dynamic functional connectivity is finished
with in-house programming in MATLAB (R2016a) according to
the methods stated in previous papers (Sakoglu et al., 2010; Di
and Biswal, 2013; Hutchison et al., 2013a).

Clustering Analysis
For each subject, the windowed functional connectivity matrixes
with high variability were selected as subject exemplars, and
used in K-means clustering to obtain global clustering centers.
The K-means plus (k-means ++) algorithm was utilized here to
perform clustering analysis. We repeated the clustering method
using different distance functions (correlation and cosine rather
than the L1-norm) and found similar results; thus, we used the
correlation distance in this paper. We determined the optimized
number of clusters to be five using the elbow criterion of the
cluster validity index, which was computed as the ratio of the
within-cluster distances to the between-cluster distances. These
global clustering centers were then used as starting points to
cluster the dynamic functional connectivity matrix data for each
subject. Subsequently, the median of all the matrixes classified
into each center was calculated as the representation of one
micro-state. This workflow of the clustering analysis is illustrated
in Figure 1.

There were two basic indexes used to evaluate the transitions
between micro-states. First, the dwelling time, which was
represented by the times or occurrence time of one state
throughout the entire scanning time, was calculated as the
number of matrixes classified into this state and represented the
occurrence probability of each state. Second, the transition time,
which represented the probability of transition from the current
state to another, was calculated as the number of transitions from
one state to another. Here, the time could be represented as a
percentage of the total scanning time.

Statistical Analysis
Subsequently, based on the subject-specific states, we compared
the three groups with respect to the dwelling time of each state,
the transition time between states and the functional connectivity
strength in the corresponding states. After a normality test and
a homogeneity test of variance, a two-sample t-test was utilized
on the dwelling time and the functional connectivity in each
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FIGURE 1 | The working flow of the clustering analysis. Firstly perform k-means++ clustering on all subjects in three groups, and the resulted clustering centers as
the numbers were used as the initial starts for the individual k-means++ clustering; for all the results of individual clustering results, we observed the group-level
difference.

state, and nonparametric permutation test was utilized on the
transition time between states with 1,000 times of randomization.
To distinctly assess the age-related changes of the functional
connectivity strength in each micro-states, the network averaged
functional connectivity was calculated using the significant
connections, which were identified by one sample t-tests within
each group and each state with an FDR-corrected (false discovery
rate) p < 0.05. Then, one-way ANOVA tests were to reveal the
significant age related changes of network connectivity (FDR-
corrected p < 0.05). The F-statistics were used and averaged to
access the age related variability for each sub-network in each
state.

RESULTS

The Dwelling Time of the Functional
Micro-States
We used the K-means clustering method to identify re-occurring
patterns of FC states in each subject, and the group-averaged
states and the group-averaged dwelling time are illustrated
in Figure 2, including state 1 (S1), state 2 (S2), state 3
(S3), state 4 (S4), and state 5 (S5). Different states showed
different connectivity patterns and strengths. For same states,
the connectivity patterns were similar among the groups, but the
dwelling times were not. On average, the dwelling time of state 3
was the highest among all three groups. However, there were no
significant differences in the dwelling times of all states between
the three groups (Figure 3A). The significant level here was FDR
corrected p < 0.05.

The Transition Time of the Functional
Micro-States
Statistical comparisons indicated that the transition between
states changed significantly with age increasing (Figure 3B). The
changes between the young and the adult group showed some
decreased transitions and other increased transitions (p < 0.05).
The changes between the adult and the old group were less than
that in the early development stage, indicating more increased
transition than the decreased transition. The transition time
between states was calculated in each subject, and the averaged

transition matrixes for each group were represented in Figure 4A.
The transition matrixes were almost symmetric, meaning that
the transition was undirected. These transition matrixes showed
clear patterns that were similar among the three groups. Distinct
transition patterns and significant changes between groups could
be observed in the transition matrixes. High-level transition
frequencies were observed between S1 and S3, S2 and S4, S3
and S4, and S3 and S5. These transition patterns were stronger
in the older groups than that in the young group. Additionally,
Figure 4B shower the distances between all micro-states and the
stationary connectivity. S3 and S4 showed the highest similarity
(the lowest distance) with the stationary connectivity. Among the
transitions between micro-states, S1–S3, S4–S2, S4–S3, and S5–
S3 showed higher level of similarity (shorter distances) than the
other transitions.

Differences of Functional Connectivity in
Each Micro-State
The functional connectivity of all states showed substantial and
significant changes between groups (Figure 5), with statistical
level of FDR corrected p < 0.05. Almost all network connections
showed inverted U shapes from the young to the old subjects,
which meant increasing FC from the young subjects to the adult
subjects and decreasing FC from the adult subjects to the old
subjects. For example, the overall connections in S1 and S2
changed in this pattern. The FC of SMN, OCC, FPN, and DMN in
S3 also showed inverted-U-shaped changes, and the connectivity
of CON and CER decreased in the adult subjects. This same
pattern was also observed in S4, as the CON-CER FC decreased
in the adult subjects. However, the CON-associated FC and CER-
associated internetwork FC also decreased in the adult group.
Regarding S5, there were less significant changes, but the SMN
and its associated networks showed similar inverted U-shaped
changes. Figure 6 illustrated the level of age-related variability
for all networks in each state based on the F statistics from
ANOVA tests. The dotted line represented F(2, 85) = 4.60 (FDR
corrected p < 0.001), based on which the solid line outside this
dotted line showed dominant age related variability. Each state
showed different age related variability for every sub-network.
S1 and S2 showed higher variability in DMN and then FPN
and lower variability in CON, CER, and OCC. S3, S4, and S5
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FIGURE 2 | The connectivity matrix and averaged dwelling time of the micro-states for each group, including both dynamic and stationary matrixes. The color
represents the level of functional connectivity according to the color bar. Y, young group; A, adult group; O, old group. The percentages on the matrixes are the
transition time percentages of the state in each group. Color bar here represented the T-value.

FIGURE 3 | (A) The bar graph of averaged dwelling time for three groups; (B) the group differences of transition time between states Y, young group; A, adult group;
O, old group.

exhibited distinct high variability in SMN. S3 also showed high
variability in FPN, S4 showed high variability in FPN and S5
also showed high variability in CER. The three groups averaged
transition matrix between these states was visualized in the center
of Figure 6, which will be further addressed in the discussion
section.

DISCUSSION

In this work, we extracted micro-states of dynamic functional
connectivity networks with sliding window correlation and
clustering analysis. To the best of our knowledge, it is the first
to investigate aging associated human brain changes from the
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FIGURE 4 | The matrixes of transition time and the distance matrixes between micro-states for each group (A): each node (a little block) represented the averaged
transition time between paired states, and the red and black colors indicate high transitions; (B): each node (a little block) represented the distance between paired
states, and the red and black colors meant large distance; Y, young group; A, adult group; O, old group.

FIGURE 5 | The group differences in functional connectivity across all micro-states. The level of significance was an FDR-corrected q-value < 0.05. Y, young group;
A, adult group; O, old group; CON, cingulo-opercular network; DMN, default mode network; FPN, frontoparietal network; OCC, occipital network; SMN,
sensorimotor network; CER, cerebellar network. Color bar represented the T-values.

aspect of dynamic functional micro-states using resting-state
fMRI. We compared the micro-states between three age groups
and explored the specific distribution of age-related functional
variations in all intrinsic sub-networks for each micro-state. The
results of the current study converged into two main findings:

(1) the transition time of the micro-states showed significant
alterations between the age-related groups, but the dwelling time
of each state did not significantly differ from each other; (2) the
functional connectivity of the micro-states showed inverted-U-
shaped changes across the three groups. The following discussion
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FIGURE 6 | The variability distribution of the sub-networks for each micro-state. The center represent the averaged transitions between states. The radius of each
solid line represents the F-values from the one-way ANOVA; the dotted lines represented line that F-value = 4.6 (inside is FDR corrected p > 0.001; outside is FDR
corrected p ≤ 0.001).

will focus on these findings and will make clear what these results
indicate.

Micro-States Indicated the Functional
Resources
A previous study (Rashid et al., 2014) suggested that dynamic
functional connectivity captured stable connectivity patterns
which were not observed in stationary connectivity. These
functional micro-states might be the inherent stable connectivity
patterns in functional system of human brain. Although no
significant difference in the occurrence probabilities of the micro-
states was found between groups, the occurrence probability
varied between states. This finding might suggested that the
existence of micro-states was related to the inherent organization
or dynamics of functional networks. The distances between each
state and stationary connectivity matrix were relatively lower
than the distance between these states. Relative to the other
states, state 3 indicated the highest probability of occurrence and
showed the shortest distance with the stationary connectivity
matrix. This could imply that each micro-state might be
intrinsically part of the stationary connectivity pattern, which was
reflected by the low distance between micro-states and stationary
state. The stationary connectivity is the most important stable
connectivity pattern of the functional system, which can be
regarded as a basic brain connection pattern of the dynamic

functional fluctuations. The different occurrence probability of
each state in the same group might be associated with the intrinsic
meaning of each micro-state.

This kind of connectivity pattern was the intrinsic feature
of each micro-state. Our results of the functional connectivity
showed inverted-U-shaped changes for the most connections in
the states with age increasing. For the functional connectivity
comparisons, the adult group showed mostly higher connectivity
than that of the young group, and the old group showed mostly
lower connectivity than that of the adult group. These differences
were not like the age-related changes in the stationary functional
connectivity, which were inverted-U-shaped in intra-network
connectivity and U-shaped in internetwork connectivity (Betzel
et al., 2014; Cao et al., 2014; Keunen et al., 2017; Siman-Tov et al.,
2017). It is well established that the intrinsic functional resources
in our brain increase during maturation in the early years and
decrease with the aging process. The functional connectivity
within specific networks, such as the DMN (Betzel et al., 2014;
Cao et al., 2014; Douaud et al., 2014; Geerligs et al., 2014), CON
(Betzel et al., 2014; Geerligs et al., 2014; Raichlen et al., 2016; Long
et al., 2017), and OCC (visual) (Yan et al., 2011; Damoiseaux et al.,
2016; Chen et al., 2017; Zhang et al., 2017), appeared to increase
in the early years and decrease in the later years, showing an
inverted U shape over lifespan time. The functional connectivity
between networks, such as the DMN-FPN (Geerligs et al., 2014)
and FPN-OCC (Chen et al., 2017; Zhang et al., 2017), generally
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presented a U-shaped, age-related trend, decreasing in the early
years, and increasing in the late years. The functional connectivity
in each state changed with increasing age, following the same
trends observed with the development of inherent networks or
cognitive resources. This could also support the notion that
micro-states involve intrinsic stable patterns of connectivity,
which represent some specific cognitive resources.

Age-Related Transitions Between
Micro-States
The transitions between micro-states emerged as the fluctuations
of functional connectivity. Although there was no difference in
dwelling time between states, the transition time between micro-
states significantly changed between groups, which could suggest
that the transitions in micro-states are highly related to the
development and aging process. The transition between states
showed various patterns among the three groups. Some transition
between states decreased from the young to the adult but
increased from the adult to the old; other trainsitions increased in
both two development procedure. These features suggested that
the transition patterns might be intrinsic and that the transition
strength could vary based on cognitive demand or deficit since
age increasing.

When comparing the transition matrixes and the distance
matrixes, the states with higher transition frequency showed
shorter distances. This might suggest that the transition between
micro-states or intrinsic connectivity patterns preferentially
occur between the states with short distances. Based on the
alterations in transition strength, we could speculate that the
changes from one state to another state might be an avenue for
information communication. There are both declines and growth
in functional networks with age increasing, and these changes
basically correspond to decreased function within intrinsic
networks and increased function between intrinsic networks,
respectively (Hagmann et al., 2010; La Corte et al., 2016). The
various changes within or between networks provide the basis for
micro-states transition, which can balance the cognitive decline
and growth.

The Intrinsic Variation in Each
Micro-State
We suggested that the states were the basic functional
connectivity patterns that could form certain combinations
to respond to many kinds of situations, such as tasks and
diseases. The transitions between the states or patterns are
typical representations of the dynamic network changes that
occur to adapt to many brain conditions. Age related changes
in functional networks were actually a process of network
decline, reorganization and transitions between states, according
to results here and previous literatures.

To reveal the underlying features of the micro-states and to
interpret what happened in the micro-sates with age increasing,
we investigated each state with respect to the age-related variation
for each state. The age-related variability analysis indicated
that each micro-state demonstrated a different distribution of
variability in the intrinsic networks. For example, S3 (state 3),

which was close to that of the stationary connectivity, showed
the highest variability in FPN, suggesting clear changes across
the three groups. In addition, the distributions of the age-related
variability in all states appeared to demonstrate a complementary
pattern. The DMN showed higher variability in S1 and S2. The
FPN presented high variation in S1 and S3. The fact that the
OCC showed lower variation in all states, might be due to the
higher aging related variation of FPN in other states (Davis et al.,
2008). We suggested that the dynamic transitions between states
could compensate for the age related variation in some intrinsic
cognitive networks to balance the age-related changes in the
different cognitive systems.

In fact, many previous studies (Spreng et al., 2010; Barber
et al., 2013; Toussaint et al., 2014; Kennedy et al., 2015; Li et al.,
2015; Grady et al., 2016) reported the aging related differences
in the functional interactions among cognitive networks, such
as the frontoparietal network and default mode network, and
that constituted a mechanism of reorganization that served to
balance the various age-related changes, including both decline
and growth. When the micro-states involved stable connectivity
patterns, similar to the intrinsic cognitive resources or functional
networks, the early increases and late decreases observed in the
current research were consistent with the literatures (Friston
et al., 1996; Tomasi and Volkow, 2012; Betzel et al., 2014;
Spreng et al., 2016; Keunen et al., 2017). Some reorganization
and compensation of the functional networks were processed
via the dynamic transitions between the stable connectivity
patterns or micro-states. In fact, studies have found the
dynamic reorganization (Sala-Llonch et al., 2012) and dynamic
participation (Schaefer et al., 2014) of functional connectivity
hubs in healthy brain networks also using the sliding window
correlation method.

Limitations and Perspective
There were several limitations that need further investigation
in future work. First, the optimal number of clustering was
a result of the data-driven method based on the current data
analysis only. We thought there could be more specific micro-
states when more detailed parcellations of the network and higher
time resolution of the dynamic analysis were performed. This was
similar to the modularity analysis in that the number of intrinsic
networks could be defined in various scales. Second, there was
a need to investigate the underlying processes of the transitions
between micro-states in future research. In this paper, we revealed
that the transitions between states were most likely an important
mechanism of functional reorganization with age increasing. The
inherent reasons for the transitions, as well as for the age-related
changes, were still not clear.

We performed a dynamic functional connectivity analysis and
provided a method for extracting the functional micro-states
using dynamic analysis. The dynamic transitions between these
micro-states could be highly related to the macroscopic dynamic
changes in functional networks with age increasing. These
states presented the basic and important functional connectivity
patterns that could be combined with the dynamic changes in the
whole functional networks. These types of connectivity patterns
were similar to the network basis, such as motif, to spatially
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decompose brain network (Hutchison et al., 2013a; Sporns, 2013;
Betzel et al., 2016). We think that this network analysis approach
is well enough within the concepts of the emerging field of
network medicine and network physiology (Ivanov et al., 2016).
Constructing networks from medical images (in this case fMRI)
is one kind of approach which is complementary to the signal
analysis (Bartsch et al., 2015; Liu et al., 2015). This approach also
highlights the interplay between network topology and function
(Bashan et al., 2012).

CONCLUSION

We have performed, to our knowledge, the first whole-brain
characterization of age-related micro-states in the view of
dynamic functional connectivity. The key finding was that
the age-related changes in functional connectivity micro-states
mainly occurred in the transitions between state. This could be
used as distinctive characteristic markers or technique to observe

the underlying neural activities in our brain systems and to reveal
specific aging mechanism.
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