31 research outputs found

    Chemical Basis of Interactions Between Engineered Nanoparticles and Biological Systems

    Get PDF
    A recently reported incident of severe pulmonary fibrosis caused by inhaled polymer nanoparticles in seven female workers obtained much attention. In addition to the release of ENM waste from industrial sites, a major release of ENMs to environmental water occurs due to home and personal use of appliances, cosmetics, and personal products, such as shampoo and sunscreen. Airborne and aqueous ENMs pose immediate danger to the human respiratory and gastrointestinal systems. ENMs may enter other human organs after they are absorbed into the bloodstream through the gastrointestinal and respiratory systems. Practically, a thorough understanding of the fundamental chemical interactions between nanoparticles and biological systems has two direct impacts. First, this knowledge will encourage and assist experimental approaches to chemically modify nanoparticle surfaces for various industrial or medicinal applications

    Influence of photochemical loss of volatile organic compounds on understanding ozone formation mechanism

    Get PDF
    Volatile organic compounds (VOCs) tend to be consumed by atmospheric oxidants, resulting in substantial photochemical loss during transport. An observation-based model was used to evaluate the influence of photochemical loss of VOCs on the sensitivity regime and mechanisms of ozone formation. Our results showed that a VOC-limited regime based on observed VOC concentrations shifted to a transition regime with a photochemical initial concentration of VOCs (PIC-VOCs) in the morning. The net ozone formation rate was underestimated by 3 ppbh(-1) (similar to 36 ppb d(-1)) based on the measured VOCs when compared with the PIC-VOCs. The relative contribution of the RO2 path to ozone production based on the PIC-VOCs accordingly increased by 13.4 %; in particular, the contribution of alkene-derived RO(2 )increased by approximately 10.2 %. In addition, the OH-HO2 radical cycle was obviously accelerated by highly reactive alkenes after accounting for photochemical loss of VOCs. The contribution of local photochemistry might be underestimated for both local and regional ozone pollution if consumed VOCs are not accounted for, and policymaking on ozone pollution prevention should focus on VOCs with a high reactivity.Peer reviewe

    A New Type of Quartz Smog Chamber : Design and Characterization

    Get PDF
    Publisher Copyright: ©Since the 1960s, many indoor and outdoor smog chambers have been developed worldwide. However, most of them are made of Teflon films, which have relatively high background contaminations due to the wall effect. We developed the world's first medium-size quartz chamber (10 m(3)), which is jointed with 32 pieces of 5 mm thick polished quartz glasses and a stainless-steel frame. Characterizations show that this chamber exhibits excellent performance in terms of relative humidity (RH) (2-80%) and temperature (15-30 +/- 1 degrees C) control, mixing efficiency of the reactants (6-8 min), light transmittance (>90% above 290 nm), and wall loss of pollutants. The wall loss rates of the gas-phase pollutants are on the order of 10(-4) min(-1) at 298 K under dry conditions. It is 0.08 h(-1) for 100-500 nm particles, significantly lower than those of Teflon chambers. The photolysis rate of NO2 (J(NO2)) is automatically adjustable to simulate the diurnal variation of solar irradiation from 0 to 0.40 min(-1). The inner surface of the chamber can be repeatedly washed with deionized water, resulting in low background contaminations. Both experiments (toluene-NOx and alpha-pinene-ozone systems) and box model demonstrate that this new quartz chamber can provide high-quality data for investigating SOA and O-3 formation in the atmosphere.Peer reviewe

    Exploring the Immunotoxicity of Carbon Nanotubes

    Get PDF
    Mass production of carbon nanotubes (CNTs) and their applications in nanomedicine lead to the increased exposure risk of nanomaterials to human beings. Although reports on toxicity of nanomaterials are rapidly growing, there is still a lack of knowledge on the potential toxicity of such materials to immune systems. This article reviews some existing studies assessing carbon nanotubes’ toxicity to immune system and provides the potential mechanistic explanation

    ICAM-1 Targeted Drug Combination Nanoparticles Enhanced Gemcitabine-Paclitaxel Exposure and Breast Cancer Suppression in Mouse Models

    No full text
    Despite the availability of molecularly targeted treatments such as antibodies and small molecules for human epidermal growth factor receptor 2 (HER2), hormone receptor (HR), and programmed death-ligand 1 (PD-L1), limited treatment options are available for advanced metastatic breast cancer (MBC), which constitutes ~90% mortality. Many of these monotherapies often lead to drug resistance. Novel MBC-targeted drug-combination therapeutic approaches that may reduce resistance are urgently needed. We investigated intercellular adhesion molecule-1 (ICAM-1), which is abundant in MBC, as a potential target to co-localize two current drug combinations, gemcitabine (G) and paclitaxel (T), assembled in a novel drug-combination nanoparticle (GT DcNP) form. With an ICAM-1-binding peptide (referred to as LFA1-P) coated on GT DcNPs, we evaluated the role of the LFA1-P density in breast cancer cell localization in vitro and in vivo. We found that 1–2% LFA1-P peptide incorporated on GT DcNPs provided optimal cancer cell binding in vitro with ~4× enhancement compared to non-peptide GT DcNPs. The in vivo probing of GT DcNPs labeled with a near-infrared marker, indocyanine green, in mice by bio-imaging and G and T analyses indicated LFA1-P enhanced drug and GT DcNP localization in breast cancer cells. The target/healthy tissue (lung/gastrointestinal (GI)) ratio of particles increased by ~60× compared to the non-ligand control. Collectively, these data indicated that LFA1 on GT DcNPs may provide ICAM-1-targeted G and T drug combination delivery to advancing MBC cells found in lung tissues. As ICAM-1 is generally expressed even in breast cancers that are triple-negative phenotypes, which are unresponsive to inhibitors of nuclear receptors or HER2/estrogen receptor (ER) agents, ICAM-1-targeted LFA1-P-coated GT DcNPs should be considered for clinical development to improve therapeutic outcomes of MBCs

    Characterization of Protein Clusters of Diverse Magnetic Nanoparticles and Their Dynamic Interactions with Human Cells

    No full text
    Although nanoparticle/protein binding and the cytotoxicity of nanoparticles have been separately reported, there has been no study linking the nature of nanoparticle/protein clusters to cell uptake and the dynamic cellular responses. We report here that water-soluble iron oxide-based magnetic nanoparticles (MNPs) with different sizes and surface chemistry bind different serum proteins in terms of protein identity and quantity without changing the protein secondary structures. Carboxylated MNPs (and aminated one in smaller MNPs) resulted in higher cytotoxicity, and PEG coating reduced both cell uptake and the cytotoxicity. Smaller MNPs (especially the carboxylated one) bind more serum proteins, are much less taken up by cells as compared to larger particles, and yet elicit more dynamic cytotoxic responses. Besides the intrinsic effects of size and surface charge of the water-soluble MNPs, the cellular effects of MNPs/protein clusters were also attributed to the identity and quantity of the adsorbed proteins rather than the binding-induced new epitopes on the proteins. © 2009 American Chemical Society

    Hexanoyl-Chitosan-PEG Copolymer Coated Iron Oxide Nanoparticles for Hydrophobic Drug Delivery

    No full text
    Nanoparticle (NP) formulations may be used to improve in vivo efficacy of hydrophobic drugs by circumventing solubility issues and providing targeted delivery. In this study, we developed a hexanoyl-chitosan-PEG (CP6C) copolymer coated, paclitaxel (PTX)-loaded, and chlorotoxin (CTX) conjugated iron oxide NP (CTX-PTX-NP) for targeted delivery of PTX to human glioblastoma (GBM) cells. We modified chitosan with polyethylene glycol (PEG) and hexanoyl groups to obtain the amphiphilic CP6C. The resultant copolymer was then coated onto oleic acid-stabilized iron oxide NPs (OA-IONP) via hydrophobic interactions. PTX, a model hydrophobic drug, was loaded into the hydrophobic region of IONPs. CTX-PTX-NP showed high drug loading efficiency (>30%), slow drug release in PBS and the CTX-conjugated NP was shown to successfully target GBM cells. Importantly, the NPs showed great therapeutic efficacy when evaluated in GBM cell line U-118 MG. Our results indicate that this nanoparticle platform could be used for loading and targeted delivery of hydrophobic drugs

    Difference of Sodium Currents between Pediatric and Adult Human Atrial Myocytes: Evidence for Developmental Changes of Sodium Channels

    No full text
    Voltage-gated calcium currents and potassium currents were shown to undergo developmental changes in postnatal human and animal cardiomocytes. However, so far, there is no evidence whether sodium currents also presented the developmental changes in postnatal human atrial cells. The aim of this study was to observe age-related changes of sodium currents between pediatric and adult atrial myocytes. Human atrial myocytes were acutely isolated and the whole-cell patch clamp technique was used to record sodium currents isolated from pediatric and adult atrial cardiomocytes. The peak amplitude of sodium currents recorded in adult atrial cells was significantly larger than that in pediatric atrial myocytes. However, there was no significant difference of the activation voltage for peak sodium currents between two kinds of atrial myocytes. The time constants for the activation and inactivation of sodium currents were smaller in adult atria than pediatric atria. The further study revealed that the voltage-dependent inactivation of sodium currents were more slow in adult atrial cardiomyocytes than pediatric atrial cells. A significant difference was also observed in the recovery process of sodium channel from inactivation. In summary, a few significant differences were demonstrated in sodium currents characteristics between pediatric and adult atrial myocytes, which indicates that sodium currents in human atria also undergo developmental changes.</p
    corecore