26 research outputs found

    Advances in stem cell therapy for sensory nerve injury

    Get PDF
    Sensory nerves belong to the afferent nerve part of the peripheral nervous system. Their role is to accept the stimuli inside and outside the body and transmit them to the center nerve system to form sensations or reflexes. Sensory nerve damage can be caused by trauma, tumor invasion, surgical injury, etc. Sensory nerve injury may cause decline or loss of some sensory organs function in patients. Damage of important sensory nerves such as optic nerves and auditory nerves can bring profound troubles to patients' lives. So far, the main clinical method to repair sensory nerves is autologous nerve transplantation. However, its application is limited by various factors, and the recovery effect of nerve function is often limited. Stem cells have the potential of multi-directional differentiation, which can differentiate into Schwann cells, and then secrete neurotrophic factors to promote axonal growth and myelin regeneration. Schwann cells directionally proliferate and form BĂŒngner zones which guide nerve regeneration. Stem cells can also differentiate into neurons and construct nerve defect repair materials, which is an ideal choice for nerve repair. At present, the tissue engineering technology based on stem cells, combined with several key biotechnology, such as the use of biopolymerized or artificial surface micro-patterning nerve conduit to bridge nerve defects, and the use of microspheres to achieve the controlled release of extracellular matrix proteins and neurotrophic factors, is being widely studied and has achieved certain research results. This article reviews the research progress of stem cells in the repair of several major sensory nerves, such as optic nerves, olfactory nerves, cochlear nerves and sensory nerve fibers of sciatic nerve, expecting to provide a new perspective for neural repair of stem cells, broaden the preclinical research in nerve repair, and provide reference for follow-up clinical application

    Purified dietary red and white meat proteins show beneficial effects on growth and metabolism of young rats compared to casein and soy protein

    Get PDF
    This study compared the effects of casein, soy protein (SP), red (RMP) and white meat (WMP) proteins on growth and metabolism of young rats. Compared to casein, the ratio of daily feed intake to daily body weight gain of rats was not changed by meat protein but reduced by SP by 93.3% (P<0.05). Feeding RMP and WMP reduced the liver total cholesterol (TC) contents by 24.3% and 17.8% respectively (P<0.05). Only RMP increased plasma HDL-cholesterol concentrations (by 12.7%, P<0.05), whereas SP increased plasma triacylglycerol, TC and LDL-cholesterol concentrations by 23.7%, 19.5% and 61.5% respectively (P<0.05). Plasma essential and total amino acid concentrations were increased by WMP (by 18.8% and 12.4%, P<0.05) but reduced by SP (by 28.3 and 37.7%, P<0.05). Twenty five liver proteins were differentially expressed in response to different protein sources. Therefore, meat proteins were beneficial for growth and metabolism of young rats compared to casein and SP

    A Novel Immune-Related Prognostic Signature in Head and Neck Squamous Cell Carcinoma

    Get PDF
    The immune response within the tumor microenvironment plays a key role in tumorigenesis and determines the clinical outcomes of head and neck squamous cell carcinoma (HNSCC). However, to date, very limited robust and reliable immunological biomarkers have been developed that are capable of estimating prognosis in HNSCC patients. In this study, we aimed to identify the effects of novel immune-related gene signatures (IRGs) that can predict HNSCC prognosis. Based on gene expression profiles and clinical data of HNSCC patient cohorts from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database, a total of 439 highly variable expressed immune-related genes (including 239 upregulated and 200 downregulated genes) were identified by using differential gene expression analysis. Pathway enrichment analysis indicated that these immune-related differentially expressed genes were enriched in inflammatory functions. After process screening in the training TCGA cohort, six immune-related genes (PLAU, STC2, TNFRSF4, PDGFA, DKK1, and CHGB) were significantly associated with overall survival (OS) based on the LASSO Cox regression model. Integrating these genes with clinicopathological features, a multivariable model was built and suggested better performance in determining patients’ OS in the testing cohort, and the independent validation cohort. In conclusion, a well-established model encompassing both immune-related gene signatures and clinicopathological factors would serve as a promising tool for the prognostic prediction of HNSCC

    Effects of Casein, Chicken, and Pork Proteins on the Regulation of Body Fat and Blood Inflammatory Factors and Metabolite Patterns Are Largely Dependent on the Protein Level and Less Attributable to the Protein Source

    Get PDF
    The impact of meat protein on metabolic regulation is still disputed and may be influenced by protein level. This study aimed to explore the effects of casein, pork, and chicken proteins at different protein levels (40% E vs 20% E) on body weight regulation, body fat accumulation, serum hormone levels, and inflammatory factors/metabolites in rats maintained on high-fat (45% E fat) diets for 84 d. Increased protein levels resulted in a significant reduction in body fat mass and an increase in the serum levels of the anti-inflammatory cytokine IL-10, independent of protein source. Analysis of blood via untargeted metabolomics analysis identified eight, four, and four metabolites significantly altered by protein level, protein source, and a protein level-source interaction, respectively. Together, the effects of casein, chicken, and pork protein on the regulation of body fat accumulation and blood metabolite profile are largely dependent on protein level and less attributable to the protein source

    The Role and Mechanism of Long Non-Coding RNA HOTAIR in the Oncogenesis, Diagnosis, and Treatment of Head and Neck Squamous Cell Carcinoma

    No full text
    The most frequent malignant tumor of the head and neck is head and neck squamous cell carcinoma (HNSCC), which has a high frequency, a poor prognosis in the late stages, and subpar therapeutic results. As a result, early HNSCC diagnosis and treatment are urgently needed; however, there are no good diagnostic biomarkers or efficient therapeutic targets at this time. The long-stranded non-coding RNA HOTAIR may be important in the pathogenesis of cancer, according to recent research. By interactions with DNA, RNA, and proteins, it has been demonstrated that HOTAIR, a >200 nucleotide RNA transcript, plays a role in the biological processes of many types of tumor cells, including proliferation, metastasis, and prognosis of HNSCC. Hence, this review discusses HOTAIR’s function and molecular mechanisms in HNSCC

    The Ubiquitin–Proteasome System in Tumor Metabolism

    No full text
    Metabolic reprogramming, which is considered a hallmark of cancer, can maintain the homeostasis of the tumor environment and promote the proliferation, survival, and metastasis of cancer cells. For instance, increased glucose uptake and high glucose consumption, known as the “Warburg effect,” play an essential part in tumor metabolic reprogramming. In addition, fatty acids are harnessed to satisfy the increased requirement for the phospholipid components of biological membranes and energy. Moreover, the anabolism/catabolism of amino acids, such as glutamine, cystine, and serine, provides nitrogen donors for biosynthesis processes, development of the tumor inflammatory environment, and signal transduction. The ubiquitin–proteasome system (UPS) has been widely reported to be involved in various cellular biological activities. A potential role of UPS in the metabolic regulation of tumor cells has also been reported, but the specific regulatory mechanism has not been elucidated. Here, we review the role of ubiquitination and deubiquitination modification on major metabolic enzymes and important signaling pathways in tumor metabolism to inspire new strategies for the clinical treatment of cancer

    Difference analysis of gut microbiota of golden pompano <em>Trachinotus ovatus</em> (Linnaeus, 1758) with the unsynchronized growth by feeding fermented soybean meal

    Get PDF
    Abstract Golden pompano (Trachinotus ovatus) is a commercially important marine fish and is widely cultured in the coastal area of South China. We explored the distribution difference of intestinal microflora with the same growth condition and the difference of gut microflora with different growth rates fed with fermented soybean meal (FSM) and fish meal (FM) primary protein source. After 8 weeks of the breeding experiment, select significant growth fish (Zcd, 156.04 ± 1.04 g) average growth fish (Zc, 120.01 ± 1.05 g) stagnant growth fish (Zcx, 98.03 ± 1.08 g) in FSM and select average growth fish (Dc, 158.03 ± 1.02 g) in FM. Sequencing results show that a total of 86303 sequences had been obtained in the intestine of Trachinotus ovatus. The number of OTUs that can be annotated to the database was 2315 (98.97%). At the phylum level, Proteobacteria, Tenericutes, Spirochaetes and Firmicutes were the predominant phyla. Alpha diversity and beta diversity analyses show that gut microbes' richness and diversity in the Dc group were the highest. The diversity of gut microbiota in the FSM: Zc > Zcd >Zcx. At the genus classification level, the differences between FM and FSM were mainly in Gueglia, Grimontia, Klebsiella, Alistipes, Staphylococcus, and Parasutterella (p <0.05). Alistipes and Staphylococcus were the different genera between Dc and Zcd (p <0.05). We found significant differences in the relative abundance of Ruegeria between the Zc and Zcd groups. Also, significant differences were found in the distribution of Brevinema, Ruegeria, Unidentified-Lachnospiraceae, Blautia, and Bacteroides between Zc and Zcx groups. The results showed that fermented soybean meal had an essential effect on gut microflora of T. ovatus with the unsynchronized growth

    Laser on-line Thickness Measurement Technology Based on Judgment and Wavelet De-noising

    No full text
    Abstract: Lithium battery coating thickness is measured by sensor using laser triangulation. The algorithm based on threshold judgment and multi-scale wavelet is realized for noise high-frequency reduction of lithium battery film thickness systems. The result shows that compared with the unique multi-scale wavelet de-noising, the method applies to different lengths and discontinuous of coating thickness measurement

    A refined spectral element model for wave propagation in multiscale hybrid epoxy/carbon fiber/graphene platelet composite shells

    No full text
    The propagation of elastic waves in heterogeneous media is of interest for impact dynamics and non-destructive detection. This work presents a refined spectral element model (RSEM) to study the wave propagation in multiscale hybrid composite (MHC) shells subjected to impulsive loadings. The doubly-curved MHC shell consists of epoxy, carbon fibers, and graphene platelets (GPLs). The GPLs are functionally distributed along the thickness of the shell. For the three-phase MHC, the Halpin-Tsai micromechanical model in conjunction with the Mori-Tanaka approach is exploited to determine the effective material properties. In the framework of four-variable shear deformation theory, the governing equations along with the natural boundary conditions are derived using Hamilton's principle. A two-node spectral shell element is developed according to the closed-from solutions. The accuracy of the RSEM is verified by comparison with published results in aspects of the natural frequency and transient responses. The wave dispersion characteristics, including the wave number, phase velocity, and group velocity are examined. In the context of high frequency and short wavelength, the proposed RSEM achieves high computational efficiency benefiting from its independence of mesh structure. The time domain responses clearly indicate the wave-boundary interactions, e.g., wave reflection, dispersion, and interference. It is revealed that the present model can well capture the fundamental wave modes of the MHC shell. Moreover, the inclusion of GPLs plays a significant role in improving transverse moduli and mitigating the discontinuities of inter-laminar shear stress
    corecore