LEN University of East Anglia

Subscriber access provided by University of East Anglia Library

Bioactive Constituents, Metabolites, and Functions

Purified dietary red and white meat proteins show beneficial effects on growth and metabolism of young rats compared to casein and soy protein

Shangxin Song, Chun Hua, Fan Zhao, Mengjie Li, Qingquan Fu, Guido J. E. J. Hooiveld, Michael Muller, Chunbao Li, and Guanghong Zhou

J. Agric. Food Chem., Just Accepted Manuscript • DOI: 10.1021/acs.jafc.8b02521 • Publication Date (Web): 03 Sep 2018

Downloaded from http://pubs.acs.org on September 7, 2018

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

Purified dietary red and white meat proteins show beneficial effects on growth

and metabolism of young rats compared to casein and soy protein

Shangxin Song¹, Chun Hua¹, Fan Zhao², Mengjie Li², Qingquan Fu¹, Guido J. E. J.

Hooiveld³. Michael Muller⁴. Chunbao Li^{2*}. Guanghong Zhou^{2*}

¹School of Food Science, Nanjing Xiaozhuang University, 3601 Hongjing Road,

Nanjing 211171, P. R. China

²Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of

Animal Products Processing, MOA; Jiang Synergetic Innovation Center of Meat

Processing and Quality Control; Nanjing Agricultural University; Nanjing 210095,

P.R. China

³Nutrition, Metabolism and Genomics Group, Division of Human Nutrition,

Wageningen University, Wageningen, the Netherlands

⁴Norwich Medical School, University of East Anglia Norwich

*Corresponding author

Dr. Guanghong Zhou

Address: Weigang 1#, Nanjing, 210095, P.R. China. E-mail: ghzhou@njau.edu.cn; Tel:

86 25 84395376; Fax: 86 25 84395679

Dr. Chunbao Li

Address: Weigang 1#, Nanjing, 210095, P.R. China. E-mail: chunbao.li@njau.edu.cn;

Tel: 86 25 84395679, Fax: 86 25 84396937

Abstract

- 2 This study compared the effects of casein, soy protein (SP), red (RMP) and white
- meat (WMP) proteins on growth and metabolism of young rats. Compared to casein,
- 4 the ratio of daily feed intake to daily body weight gain of rats was not changed by
- 5 meat protein but reduced by SP by 93.3% (*P*<0.05). Feeding RMP and WMP reduced
- the liver total cholesterol (TC) contents by 24.3% and 17.8% respectively (P < 0.05).
- 7 Only RMP increased plasma HDL-cholesterol concentrations (by 12.7%, P<0.05),
- 8 whereas SP increased plasma triacylglycerol, TC and LDL-cholesterol concentrations
- by 23.7%, 19.5% and 61.5% respectively (P<0.05). Plasma essential and total amino
- acid concentrations were increased by WMP (by 18.8% and 12.4%, P<0.05) but
- 11 reduced by SP (by 28.3 and 37.7%, P<0.05). Twenty five liver proteins were
- differentially expressed in response to different protein sources. Therefore, meat
- proteins were beneficial for growth and metabolism of young rats compared to casein
- and SP.
- 15 **Keywords:** red meat; white meat; protein quality; molecular nutrition; proteomics;

Introduction

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Meat is a nutrient dense food which contains high quality protein and important micronutrients such as vitamin B12, iron and zinc¹. Mammalian muscle meat such as beef and pork are regarded as red meat², whereas chicken and fish³ are regarded as white meat. Recently, some epidemiologic studies associated high consumption of red or processed meat with several types of cancer². In October, 2015, WHO released a report, which classified red and processed meat as "probably carcinogenic to humans" (Group 2A) and "carcinogenic to humans" (Group 1), respectively². The publication of the report soon aroused widespread concerns about meat food all over the world. It also sparked heated debate in both academic and meat industrial areas, because the report was produced only based on the review of epidemiologic studies⁴. The reported carcinogenic effects of red and processed meat were mainly attributed to heme iron and the carcinogenic chemicals, such as N-nitroso-compounds and polycyclic aromatic hydrocarbons, that can be formed during meat processing and cooking². However, it is unequivocal that lean meat is an important protein source in human diets. It has been acknowledged that meat protein has high biological availability due to its high digestibility and containing all nutritionally essential amino acids (AAs), compared to plant protein¹. Therefore, moderate intake of meat is advised, instead of avoiding meat food. Under the globally increasing prevalence of obesity and metabolic syndrome in both adult and children⁵⁻⁶, dietary protein is regarded as the most promising macronutrient for improving of body composition and metabolic profile due to its pronounced satiating, thermogenic and lean body mass preserving effects compared to other macronutrients lipid and carbohydrate⁷⁻⁹. Until now, most of the studies on dietary protein have focused on dietary protein levels⁷⁻¹⁰. However, very few studies forced

41	on different protein sources. Milk and meat are important animal protein sources
42	whereas soy is an important plant protein source for human health. Considering their
43	profound differences in AA and protein compositions ^{1, 11-12} , different biological effects
44	were thus anticipated. Our previous study found that soy and meat proteins induce
45	distinct physiological and metabolic responses in rats after a short time intervention (7
46	days) ¹³⁻¹⁵ . It has been acknowledged that the nutritional conditions in early life can
47	profoundly influence human long-term health ¹⁶ . It was recommended by the
48	2015-2020 Dietary Guidelines for Americans that for children aged 2 and over, a
49	health eating pattern should include a variety of protein foods in nutrient-dense forms
50	from both animal and plant sources, like dairy, seafood, poultry, nuts and soy products,
51	but reduce consumption of red meat and processed meat products ¹⁷ . These guidelines
52	were put forward on the basis of evidence from mostly epidemiologic studies, which
53	have shown that reduced intake of red meat as well as processed meat are associated
54	with reduced risk of cardiovascular disease, obesity, type 2 diabetes, and some types
55	of cancer ¹⁷ . However, there is still lack of sufficient and rigorous animal experiments
56	to compare red meat with other protein sources. The aim of this study was to compare
57	the effects of purified dietary protein sources from red meat, white meat, milk, and
58	soy provided for a longer time (14 days) on growth and metabolism of young rats. To
59	this end, young weaning rats were fed for 14 days the nutritionally balanced
60	semi-synthetic AIN-93G diets with the only differences in protein sources. Growth,
61	body compositions and blood biochemistry profiles were measured. To explore the
62	molecular mechanism that may underlie the changes, liver metabolism in response to
63	different dietary proteins were measured using 2-dimensional gel electrophoresis
64	(2-DE) and mass spectrometry. There are three points to make our study unique.
65	Firstly, to avoid the disturbance of the carcinogenic compounds that may be formed

66 during meat processing (such as curing, smoking, high cooking temperature), the 67 purified meat protein sources were isolated from the cooked meat that was boiled in a 72°C water bath until the internal temperature reaching 70°C. Secondly, to avoid the 68 disturbance from protein level or other nutrients, all diets in our study were prepared 69 70 having the same balanced nutritional levels with the only differences in protein 71 sources. Especially, the effects of red and white meat proteins were compared in this 72 study. Our study provided novel evidence and important suggestions for the health effects of different protein sources in children diets. 73

Materials and Methods

75 Chemicals

74

76 Longissimus dorsi muscle of pigs and cattle and breast muscle of chicken were 77 purchased from Su Shi Company (Nanjing, China). Dorsal muscle of fish were 78 purchased from the local market. Diet ingredients including casein, cornstarch, dyetros, sucrose, soybean oil, cellulose, mineral mix, vitamin mix, L-Cystine and 79 choline bitartrate were from Dyets Inc. (Bethlehem, PA). Food grade soy protein 80 isolates were from Linyi Shansong biological products company (Linyi, China). 81 Tissue triacylglycerol (TAG) and total cholesterol (TC) contents assay kits were from 82 83 Nanjing Jiancheng Bioengineering Institute (Nanjing, China). Plasma insulin Radioimmunoassay kit were from Beijing North Institute of Biological Technology 84 (Beijing, China). Protease inhibitor cocktail was from Roche Applied Science 85 (Penzberg, Germany). Chemicals used for 2-dimensional gel electrophoresis including 86 87 RC DC protein assay kit II, ReadyPrep 2-D cleanup kit, bio-lyte 3/10 ampholyte 40%, 88 IPG ReadyStrip/pH3-10/11cm/12, 12% precast gels, XT MOPS running buffer, 89 iodoacetamide were from Bio-Rad (Hercules, CA, USA). The following reagents: 90 Tris-HCl, SDS, urea. thiourea. 3-[(3-cholamidopropyl) dimethyl

- ammonio]-1-propane-sulfonate (CHAPS) and DTT were purchased from Sigma (St.
- 92 Louis, MO, USA).

Animals and experimental diets

All animals were handled in accordance with the guidelines for care and use of 94 laboratory animals of the Jiangsu Provincial Academy of Agricultural Sciences (The 95 license number was SCXK (Su) 2002-0029). Male Sprague Dawley rats at 3 weeks of 96 97 age were randomly assigned to 6 groups of 10 rats each. The rats had free access to water and feed through the feeding period. After one-week acclimation, the rats were 98 99 fed 14 days of one of the six experimental diets that were different only in protein 100 sources (i.e. casein, soy, chicken, fish, beef or pork). The protein sources and diets used in this study were the same with our previous study¹³. Briefly, raw meat 101 102 materials were cooked in a 72°C water bath to an internal temperature of 70°C. 103 Cooked meat were then freeze-dried and twice defatted with methylene 104 chloride/methanol (2:1, v:v). The residual solvent was removed by evaporation and 105 the resulting protein powder was passed through a 30 Mesh (0.595 mm) sieve. The final protein powders consisted of more than 90% of protein and 6-9% of water. All 106 the diets were prepared according to the recommendations of the nutritionally 107 balanced semisynthetic AIN-93G diet¹⁸, which contained energy 4056 Kcal/Kg, 108 109 protein 177 g/Kg, fat 70 g/Kg and carbohydrate 68 g/Kg. See Table 1 for specific diet 110 formulations. To compare red and white meat proteins with casein and soy protein, 111 beef and pork protein groups were combined as single red meat protein group (n=20), whereas chicken and fish protein groups were combined as single white meat protein 112 113 group (n=20). Therefore, there were finally 4 groups of red meat protein group (n=20), 114 white meat protein group (n=20), casein (n=10), and soy protein group (n=10).

Sample collection

116	During the 14 days' feeding period, body weights and dietary intakes were measured
117	every 2 days. On the day of sacrifice, rats were deprived of feed for 4 h prior to
118	sacrifice but were given free access to water. Rats were anaesthetized with ether
119	inhalation. Blood was taken by orbital puncture and plasma was isolated. Liver and
120	epididymal adipose tissues were obtained, weighed and snap frozen in liquid nitrogen.
121	All samples were stored at -80 °C until analysis.
122	Liver lipid contents and plasma parameters detection
123	Triacylglycerol (TAG) and total cholesterol (TC) contents in the liver were
124	determined using commercial kits purchased from Nanjing Jiancheng Bioengineering
125	Institute (Nanjing, China). Plasma TAG, TC, high density lipoprotein-cholesterol
126	(HDL-C), low density lipoprotein-cholesterol (LDL-C), glucose, alanine
127	aminotransferase (ALT), aspartate aminotransferase (AST), urea and total protein (TP)
128	concentrations were analyzed using a Hitachi 7180 auto analyzer (Tokyo, Japan).
129	Plasma insulin concentrations were determined using a radioimmunoassay kit
130	purchased from Beijing North Institute of Biological Technology (Beijing, China).
131	The HOMA-IR ¹⁹ was calculated according to the equation IR = (fasting insulin in
132	mU/L _x fasting glucose in mM)/22.5. Plasma free AA concentrations were determined
133	using a Hitachi L-8900 AA analyzer (Tokyo, Japan).
134	Two-dimensional gel electrophoresis
135	Protein extraction and purification. Protein extraction was performed as reported ²⁰
136	with some modifications. Livers were weighed and 100 mg tissue was homogenized
137	with 1 ml lysis buffer: 7 M urea, 2 M thiourea, 4% 3-[(3-cholamidopropyl)
138	dimethylammonio]-1-propanesulfonate (CHAPS, wt/vol), 65 mM DTT, 2% biolyte
139	pH 3-10, and 1% protease inhibitor cocktail (Roche Applied Science, Penzberg,
140	Germany). Then the sample was centrifuged at $15,000 \times g$ for 30 min at 4 °C and the

141	supernatant was transfer into new tubes. Protein extract was purified using the
142	trichloroacetic acid (TCA)/acetone precipitation method described by Li et al. ²¹ .
143	Briefly, protein was precipitated in 9 volumes of 10% TCA/80% acetone solution at
144	-20 °C for 2 h. After centrifugation at 10,000 g for 30 min at 4 °C, the supernatant was
145	discarded and the pellet was resuspended in a rehydration buffer (7 M urea, 2 M
146	thiourea, 1% DTT). The protein contents were determined using RC DC Protein
147	Assay Kit (BioRad, Cat. 500-0122).
148	2-D gel electrophoresis. The 2-D gel was run as reported previously ²¹ with some
149	modifications. Firstly, the purified protein samples were mixed with rehydration
150	buffer (7 M urea, 2 M thiourea, 2% CHAPS (wt/vol), 1% DTT (wt/vol), 0.2% biolyte
151	pH 3-10 (vol/vol), 0.002% bromophenol blue(wt/vol) to a final concentration of 1
152	mg/mL. Two hundred micrograms of protein (200 μ L) was loaded on linear
153	immobilized pH gradient strips (isoelectric point (pI) 3-10, 11 cm, BioRad, Cat.
154	1632014, Hercules, CA). After rehydrating at 17 °C for 12 h, isoelectric focusing was
155	performed according to the program: 250 V (15 min), 8000 V (2.5 h) and 8000 V
156	(35000 Vh). After finishing isoelectric focusing, the strip was first equilibrated in 5 ml
157	equilibration buffer I (50 mM Tris-HCl, pH 8.8, 6 M urea, 20% glycerol (vol/vol), 2%
158	SDS (wt/vol) and 1% DTT (wt/vol)) for 15 min, and then transferred to 5 ml
159	equilibration buffer II (50 mM Tris-HCl, pH 8.8, 6 M urea, 20% glycerol (vol/vol), 2%
160	SDS (wt/vol) and 4% (wt/vol) iodoacetamide) for 15 min. The equilibrated strip was
161	placed on the top of a SDS-PAGE gel (12%), and then the second dimension
162	electrophoresis was run at 200 V for 2 h at 4 °C. The 2-DE map was visualized by
163	commassie blue staining.
164	Image analysis. Commassie blue stained gels were scanned, and the spots were
165	detected and quantified with PDQuest v8.0.1 software (BioRad, Hercules, CA)

according to the software tutorial and the descriptions in other papers ²²⁻²³ . For spot
identifying and gel matching, both automatic and manual editing were performed to
improve accuracy. The expression level of protein spot was normalized as a
percentage of the total volume of all of the spots in the gel. Statistical analysis were
based on the intensities of protein spots in gels (Supplementary Table 2), while
protein expression changes were represented as fold changes. The numbers of
biological repetitions of 2-DE analysis of casein, soy and red meat and white protein
groups were 5, 5, 10 and 10, respectively.
In-gel trypsin digestion of protein. The spots of interest were cut from the
polyacrylamide gels and were destained with 500 μl of a solution (25 mM NH ₃ HCO ₃
in 50% ACN) for 3×60 min, and then they were dehydrated using 100% ACN,
reduced with 10 mM DTT at 56 °C, and alkylated with 55 mM iodoacetamide without
light exposure. Afterwards the samples were treated with 50 µl trypsin solution (1 µg
trypsin in 100 μl 25 mM ammonium hydrogen carbonate in 25% ACN, pH 8.0) at
37 °C overnight.
Protein identification by mass spectrometry and functional analysis. Proteins were
identified by MALDI-TOF/TOF. The MS/MS data were searched against Mascot
2.3.02 (Matrix Science) applied to NCBI Rattus 1031(51807 seqs) based on the
following search parameters: peptide mass tolerance: 100ppm; fragment mass
tolerance, 0.6 Da; fixed modifications: Carbamidomethyl (C); variable modifications:
Gln->pyro-Glu (N-term Q), Oxidation (M) and Deamidated (NQ); max missed
cleavages: one. Significant scores > 70 and at least five peptide matches for each
protein were used as criteria for positive protein identification. The gene ontology

Statistical methods

The diet effect on measured variables were analyzed by one-way ANOVA and means
were compared by least significant difference (LSD) multiple comparison. Statistical
significance was set at $P < 0.05$. Values are shown as means \pm SD.

Results

191

192

193

194

195

Body weight and body adiposity

196	Rats in red or white meat protein groups had slightly higher initial body weights
197	(IBWs) than the rats in casein group ($P < 0.05$, Figure 1A), whereas the IBWs of the
198	rats in soy protein group were not different from casein or meat protein groups.
199	Feeding red or white meat protein diets significantly increased the daily feed intakes
200	(DFIs), daily body weight gains (DBWGs) and final body weights (FBWs) of rats.
201	However, the DFI/DBWG ratio was not different between meat proteins and casein
202	groups (Figure 1E). Feeding soy protein diet significantly reduced DBWGs (by 47.7%)
203	and FBWs (by 22.7%) of rats ($P < 0.05$, Figure 1B) without affecting the DFIs
204	compared to casein. As a result, the DFI/DBWG ratio was significantly increased by
205	dietary soy protein compared to case in ($P < 0.05$, Figure 1E).
206	In order to evaluate the effects of different dietary protein sources on body adiposity,
207	epididymal adipose tissue weight (EATW) and liver lipid contents were measured
208	(Figure 2). Compared to casein, the percentage of EATW to BW was not affected by
209	meat or soy proteins ($P > 0.05$, Figure 2A2). When compared between meat proteins
210	and soy protein, the percentage of EATW to BW was lower for the soy protein group
211	than meat protein groups. Liver TC contents were significantly reduced by red (by
212	24.3%, $P < 0.05$) or white meat proteins (by 17.8%, $P < 0.05$) but were not affected
213	by soy protein compared to casein. The changes in liver TAG contents did not reach
214	the significant level. Liver weight was reduced by soy, red meat and white meat
215	proteins compared to case in $(P < 0.05, \text{ Figure 2B})$.

Plasma profiles

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

Plasma lipid concentrations were significantly changed by different dietary protein sources (Figure 3). Plasma TAG concentrations were significantly increased by soy protein intake (by 23.7%, P < 0.05) but were not affected by red or white meat proteins compared to casein (Figure 3A1). When compared between red meat and white meat proteins, the rats fed white meat protein had lower plasma TAG concentration than the rats fed red meat protein (Figure 3A1). The pattern of the plasma TC concentration changes was the same with the plasma TAG concentrations regulated by dietary casein, soy, and meat proteins (Figure 3A2). Only red meat proteins increased the plasma HDL-C concentrations (Figure 3A3, by 12.7%, P < 0.05) in rats. Only soy protein increased the plasma LDL-C concentrations in rats (Figure 3A4, by 61.5%, P < 0.05). Plasma glucose concentrations, insulin level and HOMA-IR were significantly reduced by soy protein (P < 0.05, Figure 3B). Only red meat protein increased the plasma insulin levels and HOMA-IR. Because that liver weights of rats were reduced by dietary soy and meat proteins, therefore plasma biomarkers for liver health, i.e. AST and ALT²⁵, were measured. The ratio of AST to ALT was calculated (Figure 4A). It was showed that plasma AST and ALT concentrations were significantly increased by soy protein (increased by 74.8% and 86.8%, respectively, P < 0.05) and white meat protein (increased by 26.2% and 34.2%, respectively, P < 0.05) but were not changed by red meat protein compared to casein (Figure 4A1 & A2). Notably, no significant changes were observed in the ratio of AST to ALT in any group (Figure 4A3). Plasma urea and total protein concentrations were measured to indicate the changes of AA degradation²⁶ and protein synthesis²⁷ in the liver. Only soy protein increased plasma urea concentrations (increased by 32%, P < 0.05, Figure 4B2) but reduced plasma total protein

concentrations (reduced by 6.8%, P < 0.05, Figure 4B1). At the same time, plasma 241 242 total AA concentrations were significantly reduced by soy protein compared to casein 243 (reduced by 28.3%, P < 0.05, Table 2), among which the essential AA concentrations were reduced by 37.7% (P < 0.05) and non-essential AA concentrations were reduced 244 245 by 16.3% (P < 0.05). In contrast, feeding white meat protein increased plasma 246 essential and total AA concentrations compared to casein (increased by 18.8% and 247 12.4%, respectively, P < 0.05), whereas feeding red meat protein to rats did not affect 248 their plasma essential and total AA concentrations.

Liver protein expression changes

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

The liver protein expressions were evaluated using 2-DE. Twenty five proteins were identified as differentially expressed in response to different dietary protein sources (Table 3). One liver protein relating to ATP biosynthesis (Atp5a1, ATP synthase subunit alpha) was significantly upregulated by dietary soy, white meat and red meat proteins compared to casein. Several proteins involving in AA metabolism, such as GOT1 (aspartate aminotransferase, AST), OTC (ornithine carbamovltransferase, urea cycle), ALDH6A1 (methylmalonate-semialdehyde dehydrogenase, valine metabolic process) and MAT1A (s-adenosylmethionine synthase isoform type-1, methionine metabolic process), protein biosynthesis (EF1A1, elongation factor 1-alpha 1) and gluconeogenesis (FBP1, fructose-1,6-bisphosphatase 1) were upregulated by dietary soy protein only (P < 0.05). On the contrary, several proteins relating to proteolysis (LAP3, cytosol aminopeptidase), protein transport (GCC2, GRIP and coiled-coil domain-containing protein 2), glycolysis (PKLR, Pyruvate kinase PKLR), and triacylglycerol biosynthesis (GPD1, Glycerol-3-phosphate dehydrogenase [NAD(+)]) were significantly downregulated by dietary soy protein only. Two liver proteins relating to iron ion transport (TF, serotransferrin) and

response to oxidative stress (PRDX1, Peroxiredoxin-1) were upregulated by soy and white meat proteins. In addition, seven liver proteins were found upregulated specifically by dietary white meat protein, among which four proteins were dehydrogenases and five proteins were in mitochondrion. These proteins were mainly related to oxidation reactions in mitochondrion including processes of fatty acid oxidation and electron transport. Two liver proteins relating to lactate metabolic process (LDHA, L-lactate dehydrogenase A chain) and glycolysis (PKLR, pyruvate kinase PKLR) were upregulated only by dietary red meat protein. Two other liver proteins relating to hydrogen peroxide catabolic process (CAT, catalase) and tricarboxylic acid cycle (MDH2, malate dehydrogenase) were upregulated and one liver protein relating to transsulfuration (MPST, 3-mercaptopyruvate sulfurtransferase) was downregulated by both dietary white and red meat proteins.

Discussion

This study compared the effects of dietary purified protein sources from milk, red meat, white meat and soy provided at the nutritional recommended level on growth, body compositions, blood insulin, lipid and AA profiles and live protein expression in young weaning rats. Casein was chosen as reference protein source because from a nutritional perspective it is a high-quality protein, and it is therefore used as protein source in the well-balanced semi-synthetic AIN-93G diet¹⁸. The AIN-93 diet is the global standard for a purified rodent diets proposed by the American Institute of Nutrition (AIN), and is considered as 'golden standard' in nutrition research. We therefore used the AIN-93G diet as reference diet. For nutritional studies of protein/amino acids, laboratory rats have been recommended and are generally accepted as a valid animal model for predicting protein/amino acid nutrition and metabolism in humans²⁸⁻²⁹. Most of the early work about dietary amino acid tolerance

was done with rats fed casein-based purified diets. It has been suggested that use of
diets containing mixed ingredients and with normal protein levels is probably more
relevant in terms of extrapolation to humans ³⁰ . In our study, we used rats as animal
model, and the casein-based semi-synthetic diet (AIN-93G) was used as the reference
diet. All diets used in our study have normal protein levels but different protein
sources. Therefore, we believe the findings in our study might be relevant to humans.
Except for rodent, the farm animals like pigs have also been commonly used in
protein/amino acid studies ²⁸⁻²⁹ . Recently, the voice of promoting the use of pigs as
animal model for human nutrition study is increasing ³¹⁻³² . However, the early studies
with pigs (farm animals) were usually oriented to the immediate objective of
improving food production. This is quite different from human nutrition, in which
costs and efficiency of nutrient usage are often not overriding concerns ²⁸ . Therefore,
compared to studies with rats, the results from studies with pigs are less comparable
to human nutrition.
Our results showed that compared to meat proteins, feeding soy protein diet
significantly reduced the DFI of the rats, which was independent of the IBW of the
rats. These results were consistent with our previous study ¹³ , in which the rats were
fed the same diets for a shorter time (7 days). As proved in our previous study, the
feed intake inhibition effects of dietary soy protein to the young rats were attributed to
the AA limitation (methionine) in the soy protein source. This was also found in the
present study from the responses of plasma AA concentrations in young rats. In the
present study the plasma total AA concentrations in the young rats fed soy protein diet
were significantly reduced (by 28.3%), among which the essential AA concentrations
were especially reduced (by 37.7 %). Notably, plasma methionine and valine
concentrations was significantly reduced by more than 40% by dietary soy protein.

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

This was correlated to the liver proteins expression relating to methionine and valine metabolisms that were significantly upregulated by dietary soy protein only. On the contrary, white meat protein intake increased both essential and total AA concentrations in rats' plasma, while dietary red meat had similar effects with casein on plasma total AA concentrations. It has been proved that elevated intake of dietary protein can regulate feed intake due to high satiety^{7-9, 33}. The study from Hall et al (2003) showed that whey protein increased the satiety in human subjects compared to casein³⁴, indicating that satiety can be regulated by different protein sources. However, previous studies showed that under the condition of dietary AA limitation, the meal termination is not due to satiety, which was evidenced by the absence of the satiety sequence³⁵⁻³⁶. The underlying mechanisms of the feed intake depression effects of dietary AA limitation have been well reviewed³⁵. Therefore, we concluded that the feed intake reduction effects of the dietary soy protein was caused by the AA limitation but not by satiety that may affected by dietary soy protein. It is also suggested that when study the effects of different protein sources on satiety, the AA compositions of protein sources should be considered firstly. In order to evaluate the effects of different protein sources on growth of young rats, the ratio of DFI/DBWG were calculated. Both white and red meat proteins had similar DFI/DBWG ratios with casein indicating that meat proteins had similar effects with milk protein on regulation of growth of young rats. However, compared to case in and meat proteins, dietary soy protein had a significantly higher DFI/DBWG ratio. This indicated that when feeding the same amount of soy protein, casein or meat proteins, the body weight gain of the young rats fed soy protein will be much lower (by about 50%) than the rats fed casein or meat proteins. The body compositions of the young rats after 14 days' consumption of different protein diets were measured. It was found

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

that the adipose tissue mass and liver weight of rats were significantly reduced by dietary soy protein. At the same time, the negative body nitrogen and protein balances were observed in the rats fed soy protein diet according to the changes in plasma urea and total protein concentrations, which are biomarkers for body nitrogen and total protein balance²⁶. It was showed that plasma urea concentration were significantly increased but plasma total protein concentration were significantly reduced by dietary soy protein intake. Unlike soy protein, plasma urea and total protein concentrations were similar between casein, red meat and white meat protein groups. This indicates that meat proteins are more balanced protein sources than soy protein in term of body protein metabolism. The liver plays an important role in regulating AA and protein metabolism. Since in the present study the liver weights of young rats were significantly reduced by both dietary soy and meat proteins compared to casein. In order to evaluate the health status of the liver, plasma AST/ALT ratio was calculated²⁵. It was showed that no significant changes were observed in AST/ALT ratios, indicating that the liver function was not impaired by any dietary protein sources in this study. Only the individual plasma AST or ALT concentrations were increased by dietary soy and white meat proteins. This was consistent with the changes in liver protein expression of GOT1 (i.e. AST), which was significantly upregulated by dietary soy protein only. The increased AST and ALT indicated that the AA metabolism in the liver was activated by soy protein and white meat protein. However, the mechanisms are different between soy and white meat protein. For soy protein, this was caused by AA limitation (low plasma AA concentrations)) and will lead to negative nitrogen balance. For white meat protein, this was caused by AA excess (high plasma AA concentrations) and will lead to AA waste. Although, the plasma total protein concentrations was reduced specifically by dietary soy protein, the liver

protein expression relating to protein biosynthesis was increased but the liver protein
expression relating to proteolysis was reduced specifically by dietary soy protein. This
was suggested to be a compensatory increase in protein synthesis in response to
inadequate in essential AA intake in soy protein group.
Accordingly, not just for adult people, cardiovascular morbidity can now be
considered to be, in part, a prenatal and pediatric disease ¹⁶ . Blood TG, TC, HDL-C
and LDL-C are important biomarkers for lipid homeostasis and thus the
cardiovascular diseases. It has been found that soy protein may have beneficial effects
on lipid metabolism. However, in this study we found that soy protein had deleterious
effects on liver adiposity and blood lipid profiles, whereas both red and white meat
proteins showed beneficial effects. Specifically, dietary red and white meat proteins
reduced the liver TC contents. Feeding red meat protein increased the plasma HDL-C
concentration. When analyzing metabolism in the liver, we found that feeding white
meat protein diets increased fatty acid beta-oxidation. Whereas dietary soy protein
had no significant effects on liver lipid contents but increased the plasma TAG, TC
and LDL-C concentrations.
Insulin resistance is the main mechanism for type 2 diabetes and a main component
for metabolic syndrome. Notably, plasma insulin and HOMA-IR levels were
significantly higher in the rats fed red meat protein than white meat protein, casein
and soy protein groups. This suggest that red meat may increase the risk of type 2
diabetes (T2D). Findings from epidemiologic studies also suggest positive
associations of red meat with risk of T2D ³⁷ . However, it is unclear whether it is the
protein per se or other components of protein-rich foods in those epidemiologic
studies. Energy metabolism in the liver were significantly increased by white meat
protein compared to red meat protein. This can be related to the increased blood AA

concentrations after intake of white meat protein. This was supported by other	study
that rapid increase of AA concentrations after a meal is related to stimulat	ion of
oxidation and protein syntheses ³⁸ . The study from Mikkelsen et al (2000) ³⁹	found
animal protein in pork meat produced a 2% higher 24-h energy expenditure th	an did
the vegetable protein in soy.	
Notably, our 2-DE analysis results showed that iron transport protein serotran	sferrin
(short name: transferrin) was significantly upregulated in the liver of rats for	ed soy
protein and white meat protein diets compared to casein and red meat protein g	groups.
This indicated that dietary soy or white meat protein intake increased liver tran	sferrin
synthesis. Transferrin is mainly synthesized in the liver ⁴⁰ . The main role of tran	sferrin
is to transport iron from sites of absorption (duodenum) and red blood cell rec	ycling
(macrophages) to tissues for storage (liver) and utilization (bone marrow) ⁴⁰⁻⁴¹ .	A high
transferrin level may indicate iron deficiency which is often seen in patients su	ffering
from iron deficiency anemia ⁴⁰ and also in the rats fed a low-iron diet ⁴² . Therefore	ore, we
deduced that the increased liver transferrin level found in the rats fed soy and	white
meat protein diets in our study can be attributed to the null heme iron (highly
bioavailable iron) in the soy protein source and relative low heme iron contents	in the
white meat protein sources compared to red meat protein sources ⁴³ . Except	for the
differences in iron content directly, it has been proved that dietary protein ca	ın also
affect iron absorption ⁴⁴⁻⁴⁵ . Etcheverry et al (2006) assessed the effects of beef a	nd soy
proteins on the bioavailability of non-heme iron in children. Their findings inc	licated
that beef protein increased non-heme iron absorption compared to soy protein ⁴	6. Iron
deficiency remain substantial problems in small children in both develope	ed and
developing nations ⁴⁷ . Therefore, when designing diets for children, the eff	fect of
protein source on iron absorption should be one of the factors taken into accoun	t.

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

Taken together, dietary soy protein showed deleterious effects on liver adiposity and blood lipid profiles and induced negative nitrogen balance and growth inhibition in young rats due to its limitation in essential AAs. In contrast to soy protein, both red and white meat proteins showed beneficial effects on growth and lipid metabolism of rats. Thus, soy protein is not an optimal protein source for growth and metabolism health of young animals, while meat protein is if not better than but at least as well as milk protein to the growth and metabolism health of young animals. There were still some limitations in this study. The treatment time was 14 days, which was a single time point and relatively short. To better understand the process and the development of metabolism changes, longer feeding time or different time points could be studied and compared in future studies. The age of the rats could affect some parts of the responses to dietary proteins. Since we did not include rats with different ages in this study, it is difficult, if not impossible to tell which parts. The study investigates the effects of normal meat protein levels. It would be interesting to test the effects of higher levels of meat proteins on metabolism in future. Therefore, more studies are needed to get a comprehensive understanding of health effects of meat proteins and its molecular mechanisms.

Abbreviations Used

2-DE: two dimensional gel electrophoresis; AA: amino acid; DBWG: daily body weight gain; DFI: daily feed intake; DFI/DBWG: ratio of daily feed intake to daily body weight gain; EATW: absolute weight of epididymal adipose tissue; EATW/BW: relative weight of epididymal adipose tissue to body weight; FBW: final body weight; HDL-C: high density lipoprotein-cholesterol; IBW: initial body weight; LDL-C: low density lipoprotein-cholesterol; LW: absolute weight of liver; LW/BW: relative weight of liver to body weight; T2D: type 2 diabetes; TAG: triacylglycerol; TAG-L:

- 441 triacylglycerol in the liver; TC: total cholesterol; TCA: trichloroacetic acid; TC-L:
- total cholesterol in the liver; TP: total protein

443 Funding Sources

- This work was funded by grants BK20170146 (Jiangsu Provincial Department of
- Science and Technology, China) and 17KJB550006 (Jiangsu Provincial Department
- of Education, China).

447 References

- 1. Pereira, P. M.; Vicente, A. F., Meat nutritional composition and nutritive role in
- the human diet. *Meat science* **2013**, *93* (3), 586-92.
- 450 2. Bouvard, V.; Loomis, D.; Guyton, K. Z.; Grosse, Y.; Ghissassi, F. E.;
- 451 Benbrahim-Tallaa, L.; Guha, N.; Mattock, H.; Straif, K.; International Agency for
- Research on Cancer Monograph Working, G., Carcinogenicity of consumption of red
- and processed meat. *The Lancet. Oncology* **2015**.
- 454 3. Kiessling, A.; Ruohonen, K.; Bjørnevik, M., Muscle fibre growth and quality in
- 455 fish. Arch Tierz Dummerstorf **2006**, 49, 137-146.
- 456 4. Klurfeld, D. M., Research gaps in evaluating the relationship of meat and health.
- 457 *Meat science* **2015**, *109*, 86-95.
- 5. Flynn, M. A.; McNeil, D. A.; Maloff, B.; Mutasingwa, D.; Wu, M.; Ford, C.;
- 459 Tough, S. C., Reducing obesity and related chronic disease risk in children and youth:
- a synthesis of evidence with 'best practice' recommendations. Obesity reviews: an
- official journal of the International Association for the Study of Obesity **2006**, 7 Suppl
- 462 *1*, 7-66.
- 6. Mellendijk, L.; Wiesmann, M.; Kiliaan, A. J., Impact of Nutrition on Cerebral
- 464 Circulation and Cognition in the Metabolic Syndrome. Nutrients 2015, 7 (11),
- 465 9416-9439.

- 466 7. Westerterp-Plantenga, M. S., The significance of protein in food intake and body
- weight regulation. Current opinion in clinical nutrition and metabolic care **2003**, 6 (6),
- 468 635-8.
- 8. Arentson-Lantz, E.; Clairmont, S.; Paddon-Jones, D.; Tremblay, A.; Elango, R.,
- 470 Protein: A nutrient in focus. Applied physiology, nutrition, and metabolism =
- *Physiologie appliquee, nutrition et metabolisme* **2015,** *40* (8), 755-61.
- 9. Moore, D. R.; Soeters, P. B., The Biological Value of Protein. Nestle Nutrition
- 473 *Institute workshop series* **2015,** 82, 39-51.
- 10. Schwarz, J.; Tome, D.; Baars, A.; Hooiveld, G. J.; Muller, M., Dietary protein
- affects gene expression and prevents lipid accumulation in the liver in mice. *PloS one*
- **2012,** *7* (10), e47303.
- 11. Elango, R.; Ball, R. O.; Pencharz, P. B., Amino acid requirements in humans:
- with a special emphasis on the metabolic availability of amino acids. Amino acids
- **2009,** *37* (1), 19-27.
- 480 12. Wen, S.; Zhou, G.; Song, S.; Xu, X.; Voglmeir, J.; Liu, L.; Zhao, F.; Li, M.; Li, L.;
- 481 Yu, X.; Bai, Y.; Li, C., Discrimination of in vitro and in vivo digestion products of
- meat proteins from pork, beef, chicken, and fish. *Proteomics* **2015**, *15* (21), 3688-98.
- 483 13. Song, S.; Hooiveld, G. J.; Li, M.; Zhao, F.; Zhang, W.; Xu, X.; Muller, M.; Li, C.;
- 484 Zhou, G., Dietary soy and meat proteins induce distinct physiological and gene
- expression changes in rats. *Scientific reports* **2016**, *6*, 20036.
- 486 14. Song, S.; Hooiveld, G. J.; Wei, Z.; Li, M.; Fan, Z.; Jing, Z.; Xu, X.; Muller, M.;
- 487 Li, C.; Zhou, G., Comparative Proteomics Provides Insights into Metabolic Responses
- 488 in Rat Liver to Isolated Soy and Meat Proteins. Journal of Proteome Research 2016,
- 489 *15* (4), 1135-1142.
- 490 15. Song, S.; Hooiveld, G. J.; Li, M.; Zhao, F.; Zhang, W.; Xu, X.; Muller, M.; Li, C.;

- 491 Zhou, G., Distinct physiological, plasma amino acid, and liver transcriptome
- responses to purified dietary beef, chicken, fish, and pork proteins in young rats.
- 493 *Molecular nutrition & food research* **2016,** *60* (5), 1199-205.
- 494 16. Hochberg, Z.; Feil, R.; Constancia, M.; Fraga, M.; Junien, C.; Carel, J. C.;
- Boileau, P.; Le Bouc, Y.; Deal, C. L.; Lillycrop, K.; Scharfmann, R.; Sheppard, A.;
- Skinner, M.; Szyf, M.; Waterland, R. A.; Waxman, D. J.; Whitelaw, E.; Ong, K.;
- 497 Albertsson-Wikland, K., Child health, developmental plasticity, and epigenetic
- 498 programming. *Endocrine reviews* **2011,** *32* (2), 159-224.
- 499 17. Agriculture, U. S. D. o. H. a. H. S. a. U. S. D. o., 2015-2020 Dietary Guidelines
- for Americans. 8th Edition ed.; 2015.
- 18. Reeves, P. G.; Nielsen, F. H.; Fahey Jr, G. C., AIN-93 purified diets for laboratory
- rodents: final report of the American Institute of Nutrition ad hoc writing committee
- on the reformulation of the AIN-76A rodent diet. *J nutr* **1993**, *123* (11), 1939-1951.
- 504 19. Cacho, J.; Sevillano, J.; de Castro, J.; Herrera, E.; Ramos, M., Validation of
- simple indexes to assess insulin sensitivity during pregnancy in Wistar and
- 506 Sprague-Dawley rats. American Journal of Physiology-Endocrinology and
- 507 *Metabolism* **2008**, *295* (5), E1269-E1276.
- 508 20. Hao, R.; Adoligbe, C.; Jiang, B.; Zhao, X.; Gui, L.; Qu, K.; Wu, S.; Zan, L., An
- 509 Optimized Trichloroacetic Acid/Acetone Precipitation Method for Two-Dimensional
- 510 Gel Electrophoresis Analysis of Qinchuan Cattle Longissimus Dorsi Muscle
- Containing High Proportion of Marbling. *PloS one* **2015**, *10* (4), e0124723.
- 512 21. Li, C. B.; Li, J.; Zhou, G. H.; Lametsch, R.; Ertbjerg, P.; Bruggemann, D. A.;
- 513 Huang, H. G.; Karlsson, A. H.; Hviid, M.; Lundstrom, K., Electrical stimulation
- affects metabolic enzyme phosphorylation, protease activation, and meat tenderization
- in beef. *Journal of animal science* **2012**, *90* (5), 1638-49.

- 22. Parodi-Talice, A.; Monteiro-Goes, V.; Arrambide, N.; Avila, A. R.; Duran, R.;
- Correa, A.; Dallagiovanna, B.; Cayota, A.; Krieger, M.; Goldenberg, S.; Robello, C.,
- Proteomic analysis of metacyclic trypomastigotes undergoing Trypanosoma cruzi
- metacyclogenesis. *Journal of mass spectrometry : JMS* **2007**, *42* (11), 1422-32.
- 520 23. Zheng, A.; Liu, G.; Zhang, Y.; Hou, S.; Chang, W.; Zhang, S.; Cai, H.; Chen, G.,
- Proteomic analysis of liver development of lean Pekin duck (Anas platyrhynchos
- domestica). *Journal of proteomics* **2012,** *75* (17), 5396-413.
- 523 24. Thomas, P. D.; Campbell, M. J.; Kejariwal, A.; Mi, H.; Karlak, B.; Daverman, R.;
- 524 Diemer, K.; Muruganujan, A.; Narechania, A., PANTHER: a library of protein
- families and subfamilies indexed by function. Genome research 2003, 13 (9),
- 526 2129-41.
- 527 25. Giannini, E.; Botta, F.; Fasoli, A.; Ceppa, P.; Risso, D.; Lantieri, P. B.; Celle, G.;
- Testa, R., Progressive liver functional impairment is associated with an increase in
- 529 AST ALT ratio. *Digest Dis Sci* **1999**, 44 (6), 1249-1253.
- 26. Leung, P. M.; Rogers, Q. R.; Harper, A. E., Effect of amino acid imbalance on
- plasma and tissue free amino acids in the rat. *J Nutr* **1968**, *96* (3), 303-18.
- 532 27. Hoffenberg, R., Measurement of the synthesis of liver-produced plasma proteins
- with special reference to their regulation by dietary protein and amino acid supply.
- 534 Proceedings of the Nutrition Society **1972**, 31 (03), 265-272.
- 535 28. Bergen, W. G., Contribution of research with farm animals to protein metabolism
- concepts: a historical perspective. *Journal of Nutrition* **2007**, *137* (3), 706.
- 537 29. Deglaire, A.; Moughan, P. J., Animal models for determining amino acid
- digestibility in humans a review. British Journal of Nutrition 2012, 108 Suppl 2 (4),
- 539 S273.
- 30. Baker, D. H., Animal models in nutrition research. *Journal of Nutrition* **2008**, *138*

- 541 (2), 391.
- 31. Spurlock, M. E.; Gabler, N. K., The development of porcine models of obesity
- and the metabolic syndrome. *Journal of Nutrition* **2008**, *138* (2), 397.
- 32. Gonzalez, L. M.; Moeser, A. J.; Blikslager, A. T., Porcine models of digestive
- disease: the future of large animal translational research. Translational Research the
- *Journal of Laboratory & Clinical Medicine* **2015,** *166* (1), 12-27.
- 33. Westerterp-Plantenga, M. S., Protein intake and energy balance. Regulatory
- 548 *peptides* **2008,** *149* (1-3), 67-9.
- 34. Hall, W. L.; Millward, D. J.; Long, S. J.; Morgan, L. M., Casein and whey exert
- different effects on plasma amino acid profiles, gastrointestinal hormone secretion and
- appetite. *The British journal of nutrition* **2003**, *89* (2), 239-48.
- 35. Gietzen, D. W.; Hao, S.; Anthony, T. G., Mechanisms of food intake repression in
- indispensable amino acid deficiency. *Annual review of nutrition* **2007**, *27*, 63-78.
- 36. Feurte, S.; Nicolaidis, S.; Berridge, K. C., Conditioned taste aversion in rats for a
- threonine-deficient diet: demonstration by the taste reactivity test. Physiology &
- *behavior* **2000,** *68* (3), 423-9.
- 37. Aune, D.; Ursin, G.; Veierød, M. B., Meat consumption and the risk of type 2
- diabetes: a systematic review and meta-analysis of cohort studies. *Diabetologia* **2009**,
- *559 52* (11), 2277-2287.
- 38. Boirie, Y.; Dangin, M.; Gachon, P.; Vasson, M. P.; Maubois, J. L.; Beaufrere, B.,
- Slow and fast dietary proteins differently modulate postprandial protein accretion.
- 562 Proceedings of the National Academy of Sciences of the United States of America
- **1997,** *94* (26), 14930-5.
- 39. Mikkelsen, P. B.; Toubro, S.; Astrup, A., Effect of fat-reduced diets on 24-h
- energy expenditure: comparisons between animal protein, vegetable protein, and

- carbohydrate. *The American journal of clinical nutrition* **2000,** *72* (5), 1135-41.
- 40. Macedo, M. F.; de Sousa, M., Transferrin and the transferrin receptor: of magic
- bullets and other concerns. *Inflammation & allergy drug targets* **2008**, 7 (1), 41-52.
- 41. Matsuo, S.; Ogawa, M.; Muckenthaler, M. U.; Mizui, Y.; Sasaki, S.; Fujimura, T.;
- Takizawa, M.; Ariga, N.; Ozaki, H.; Sakaguchi, M.; Gonzalez, F. J.; Inoue, Y.,
- 571 Hepatocyte Nuclear Factor 4alpha Controls Iron Metabolism and Regulates
- 572 Transferrin Receptor 2 in Mouse Liver. *The Journal of biological chemistry* **2015**.
- 42. Idzerda, R. L.; Huebers, H.; Finch, C. A.; McKnight, G. S., Rat transferrin gene
- expression: tissue-specific regulation by iron deficiency. *Proceedings of the National*
- 575 Academy of Sciences of the United States of America 1986, 83 (11), 3723-7.
- 43. McGuire, S., US Department of Agriculture and US Department of Health and
- 577 Human Services, Dietary Guidelines for Americans, 2010. Washington, DC: US
- 578 Government Printing Office, January 2011. Advances in Nutrition: An International
- 579 *Review Journal* **2011,** *2* (3), 293-294.
- 580 44. Hurrell, R.; Egli, I., Iron bioavailability and dietary reference values. The
- 581 *American journal of clinical nutrition* **2010,** *91* (5), 1461S-1467S.
- 582 45. Weinborn, V.; Pizarro, F.; Olivares, M.; Brito, A.; Arredondo, M.; Flores, S.;
- Valenzuela, C., The Effect of Plant Proteins Derived from Cereals and Legumes on
- Heme Iron Absorption. *Nutrients* **2015,** 7 (11), 8977-86.
- 46. Etcheverry, P.; Hawthorne, K. M.; Liang, L. K.; Abrams, S. A.; Griffin, I. J.,
- Effect of beef and soy proteins on the absorption of non-heme iron and inorganic zinc
- in children. Journal of the American College of Nutrition 2006, 25 (1), 34-40.
- 47. Villalpando, S.; Cruz Vde, L.; Shamah-Levy, T.; Rebollar, R.; Contreras-Manzano,
- A., Nutritional status of iron, vitamin B12, folate, retinol and anemia in children 1 to
- 11 years old: Results of the Ensanut 2012. Salud publica de Mexico 2015, 57 (5),

- 591 372-84.
- 592 48. Reeves, P. G.; Nielsen, F. H.; Fahey, G. C., Jr., AIN-93 purified diets for
- laboratory rodents: final report of the American Institute of Nutrition ad hoc writing
- 594 committee on the reformulation of the AIN-76A rodent diet. *The Journal of nutrition*
- 595 **1993**, *123* (11), 1939-51.

Figure Captions

Figure 1. Growth performance of rats fed casein, soy, red meat and white meat protein diets.

A. IBW: initial body weight. B. FBW: final body weight. C. DBWG: daily body weight gain. D. DFI: daily feed intake. E. DFI/DBWG: ratio of daily feed intake to daily body weight gain.

Values are shown as means \pm SD. The numbers of biological repetitions of casein, soy and red meat and white protein groups were 10, 10, 20 and 20, respectively. Different letters above bars indicate significant difference at P < 0.05 analyzed by one-way ANOVA and LSD multiple comparisons.

Figure 2. Adipose tissue weight, liver weight, liver TC and TAG content of rats fed casein, soy, red meat and white meat protein diets.

A. EATW: absolute weight of epididymal adipose tissue; EATW/BW: relative weight of epididymal adipose tissue to body weight. B. LW: absolute weight of liver; LW/BW: relative weight of liver to body weight. C. TAG-L: triacylglycerol in the liver; TC-L: total cholesterol in the liver.

Values are shown as means \pm SD. The numbers of biological repetitions of casein, soy and red meat and white protein groups were 10, 10, 20 and 20, respectively. Different letters above bars indicate significant difference at P < 0.05 tested by one-way ANOVA and LSD multiple comparisons.

Figure 3. Plasma triacylglycerol, cholesterol, glucose and insulin concentrations of rats fed casein, soy, red meat or white meat protein diets.

A1. TAG: triacylglycerol. A2. TC: total cholesterol. A3. HDL-C: high density

lipoprotein-cholesterol. A4. LDL-C: low density lipoprotein-cholesterol. B1. Glucose. B2. Insulin. B3. HOMA-IR = [glucose (mmol/L) × insulin (mIU/L)/22.5], using fasting values.

Values are shown as means \pm SD. The numbers of biological repetitions of casein, soy and red meat and white protein groups were 10, 10, 20 and 20, respectively. Different letters above bars indicate significant difference at P < 0.05 tested by one-way ANOVA and LSD multiple comparisons.

Figure 4. Plasma transaminase, total protein and urea concentrations of rats fed casein, soy, red meat or white meat protein diets.

A1. ALT: alanine aminotransferase. A2. AST: aspartate aminotransferase. A3. AST/ALT: ratio of aspartate aminotransferase to alanine aminotransferase. B1. TP: Total protein. B2: Urea.

Values are shown as means \pm SD. The numbers of biological repetitions of casein, soy and red meat and white protein groups were 10, 10, 20 and 20, respectively. Different letters above bars indicate significant difference at P < 0.05 tested by one-way ANOVA and LSD multiple comparisons.

Table 1. Ingredient composition and nutritional content of diets

g/Kg diet	Casein	Soy	Pork	Beef	Chicken	Fish	
diet composition, g/Kg diet							
Protein ¹	200	203	190	195	192	191	
Cornstarch	398	398	398	398	398	398	
Dyetros	132	132	132	132	132	132	
Sucrose	100	100	100	100	100	100	
Soybean oil	70	70	70	70	70	70	
Cellulose	50	50	50	50	50	50	
Mineral mix ²	35.0	31.9	30.3	33.4	31.4	29.2	
Vitamin mix ³	10	10	10	10	10	10	
L-Cystine ⁴	3.0	0	0	0	0	0	
Choline Bitartrate	2.5	2.5	2.5	2.5	2.5	2.5	
nutritional level, U/Kg	<u> </u>						
Energy, Kcal	4056	4056	4056	4056	4056	4056	
Protein, g	177	177	177	177	177	177	
Fat, g	70	70	70	70	70	70	
Carbohydrate, g	680	680	680	680	680	680	

Protein¹, the amount of protein powder was adjusted and balanced according to the protein content in soy and meat protein powder. Mineral mix ², the formulation of mineral mixes for the six diets was listed in the Supplemental Table 1 online. Vitamin mix³: the formulation of vitamin mix was referenced to the paper⁴⁸. L-Cystine⁴: the amino acid composition of soy and meat protein diets were not modified.

Table 2. Plasma amino acid concentrations of rats fed casein, soy, red meat or white meat protein diets.

assain say white m				rad moat
1.7	casein soy		white meat	red meat
μmol/L	n=10	n=10	n=20	n=20
TAA	3609±349 ^b	2586 ± 220^{c}	4058±416 ^a	3527±617 ^b
EAA	2030±255 ^b	1265±129°	2412±332 ^a	2102±381 ^b
NEAA	1579±102 ^a	1321 ± 110^{b}	1646±151 ^a	1424±261 ^b
Val	207 ± 38.1^{a}	121 ± 18.4^{c}	189±25.6 ^a	160±29.4 ^b
Ile	99 ± 15.18^{a}	67 ± 15.8^{c}	95.4 ± 14.4^{a}	82.0 ± 15.9^{b}
Leu	148 ± 24.4^{a}	88.7 ± 17.9^{c}	135±22.8 ^a	113 ± 24.0^{b}
Lys	581 ± 92.6^{a}	355±81.2°	576 ± 102^{a}	466 ± 86.8^{b}
Met	82.0 ± 8.16^{a}	48.9 ± 9.85^{c}	76.9 ± 11.9^{a}	65.8 ± 9.77^{b}
Phe	56.9±5.6 ^b	36.0 ± 8.81^{c}	66.7 ± 7.52^{a}	52.1 ± 14.3^{b}
Thr	653±133 ^b	370±34.1°	1037 ± 194^{a}	963 ± 208^{a}
His	73.2 ± 7.70^{a}	64.8 ± 6.89^{ab}	73.5±9.29 ^a	62.1 ± 11.20^{b}
Arg	131 ± 14.9^{b}	115±14.4 ^b	162±28.5°	138±30.3 ^b
Pro	318 ± 42.3^{b}	328±29.5 ^b	374 ± 39.5^{a}	334±55.6 ^b
Tyr	99.1 ± 11.0^{a}	60.7 ± 9.95^{b}	101 ± 20.0^{a}	90.9 ± 21.9^{a}
Asp	21.5 ± 4.93^{a}	12.8 ± 4.17^{b}	16.2 ± 5.42^{b}	13.5±7.55 ^b
Glu	127 ± 25.3^{a}	75.1 ± 15.8^{b}	87.4 ± 13.6^{b}	85.4 ± 24.5^{b}
Ala	466 ± 59.7^{a}	264±42.0°	400 ± 97.6^{b}	326±71.9°
Ser	256 ± 30.7^{b}	269±21.5 ^b	320±35.1a	267±51.3 ^b
Gly	280 ± 44.3^{b}	294 ± 30.1^{ab}	335±38.9 ^a	291 ± 51.2^{b}
Cys	14.3±3.2	18.1±6.4	16.2±2.57	16.7±6.5

Values are shown as means \pm SD. The different superscript letters within the same column mean statistical significant difference at P < 0.05 analyzed by one-way ANOVA and LSD multiple test. TAA: the sum of 17 kinds of amino acids in plasma including Arg, Pro, Met, Val, Ser, Gly, Lys, Thr, Phe, Asp, Ile, Leu, Cys, Glu, Ala, Tyr, His. EAA: the sum of 9 kinds of essential amino acids in plasma including Arg, Met, Val, Lys, Thr, Phe, Ile, Leu, His. NEAA: the sum of 8 kinds of non-essential amino acids in plasma including Pro, Ser, Gly, Asp, Cys, Glu, Ala, Tyr.

Table 3. Liver protein expression changes of rats fed casein, soy, red meat or white meat protein diets.

ID	symbol	protein name	casein	soy	white meat	red meat	GO BP	GO MF	GO CC
P15999	ATP5A1	ATP synthase subunit alpha	1.00 ^b	1.54 ^a	1.55 ^a	1.45 ^a	ATP synthesis	ATPase activity	mitochondrion
P13221	GOT1	Aspartate aminotransferase	1.00^{b}	2.22^{a}	1.73^{ab}	1.06^{b}	amino-acid biosynthesis	aminotransferase	cytoplasm
P00481	OTC	Ornithine carbamoyltransferase	1.00^{b}	1.83^{a}	0.78^{b}	0.71^{b}	urea cycle	transferase	mitochondrion
Q02253	ALDH6A1	Methylmalonate-semialdehyde	1.00^{ab}	1.32^{a}	0.87^{b}	1.06^{ab}	valine metabolic process	oxidoreductase	mitochondrion
		dehydrogenase [acylating]							
P13444	MAT1A	S-adenosylmethionine synthase	1.00^{ab}	1.26^{a}	0.82^{b}	0.80^{b}	methionine metabolic	transferase	cytoplasm
		isoform type-1					process		
P62630	EF1A1	Elongation factor 1-alpha 1	1.00^{b}	1.45 ^a	1.07^{b}	0.94^{b}	protein biosynthesis	elongation factor	cytoplasm
P19112	FBP1	Fructose-1,6-bisphosphatase 1	1.00^{b}	1.61 ^a	0.87^{b}	0.72^{b}	gluconeogenesis	hydrolase	cytoplasm
P12346	TF	Serotransferrin	1.00^{b}	1.85^{a}	1.86^{a}	1.27^{b}	iron ion transport	ferrous iron	extracellular
								binding	space
Q63716	PRDX1	Peroxiredoxin-1	1.00^{c}	1.83^{a}	1.41^{b}	1.24 ^{bc}	response to oxidative stress	peroxiredoxin	cytoplasm
								activity	
Q9WVK7	HADH	Hydroxyacyl-coenzyme A	1.00^{bc}	1.57 ^{ab}	1.65^{a}	0.86^{c}	fatty acid beta-oxidation	oxidoreductase	mitochondrion
		dehydrogenase							
P18163	ACSL1	Long-chain-fatty-acidCoA ligase 1	1.00^{b}	1.10^{ab}	1.46^{a}	1.29^{ab}	fatty acid metabolic process	ligase	mitochondrion
D4A1W8	MTTP	Microsomal triglyceride transfer	1.00^{b}	1.07^{ab}	1.46 ^a	1.40^{ab}	lipoprotein transport	lipid transporter	plasma
		protein						activity	membrane
P24329	TST	Thiosulfate sulfurtransferase	1.00^{b}	0.97^{b}	1.36^{a}	0.99^{b}	sulfur amino acid catabolic	transferase	mitochondrion
							process		
P06757	ADH1	Alcohol dehydrogenase 1	1.00^{b}	1.05^{b}	1.59^{a}	1.35 ^{ab}	acetaldehyde biosynthetic	oxidoreductase	cytoplasm
							process		

Q6UPE0	CHDH	Choline dehydrogenase	1.00 ^b	1.26 ^{ab}	1.50 ^a	1.27 ^{ab}	choline oxidation process	oxidoreductase	mitochondrion
Q5XIH3	NDUFV1	NADH dehydrogenase (Ubiquinone)	1.00^{b}	1.59 ^{ab}	1.65 ^a	1.35 ^{ab}	electron transport	NAD binding	mitochondrion
		flavoprotein 1							
P04636	MDH2	Malate dehydrogenase	1.00^{b}	1.44 ^{ab}	1.67^{a}	1.93 ^a	tricarboxylic acid cycle	oxidoreductase	mitochondrion
P04762	CAT	Catalase	1.00^{b}	1.38 ^{ab}	1.83^{a}	1.91 ^a	hydrogen peroxide catabolic	catalase activity	peroxisome
							process		
P04642	LDHA	L-lactate dehydrogenase A chain	1.00^{bc}	0.86^{c}	1.23 ^{ab}	1.39^{a}	lactate metabolic process	oxidoreductase	cytoplasm
P12928	PKLR	Pyruvate kinase PKLR	1.00^{b}	0.66^{c}	1.14 ^b	1.38^{a}	glycolysis	kinase	cytoplasm
Q68FS4	LAP3	Cytosol aminopeptidase	1.00^{a}	0.55^{b}	0.90^{a}	0.95^{a}	proteolysis	aminopeptidase	cytoplasm
D3ZZL9	GCC2	GRIP and coiled-coil	1.00^{a}	0.65^{b}	0.95^{a}	0.96^{a}	protein transport	protein binding	cytoplasm
		domain-containing protein 2							
O35077	GPD1	Glycerol-3-phosphate dehydrogenase	1.00^{ab}	0.64 ^c	0.94^{b}	1.13^{a}	triglyceride biosynthesis	oxidoreductase	cytoplasm
		[NAD(+)]							
P16638	ACLY	ATP-citrate synthase	1.00^{ab}	0.54^{b}	1.18 ^a	1.38^{a}	lipid biosynthetic process	transferase	cytoplasm
P97532	MPST	3-mercaptopyruvate sulfurtransferase	1.00^{a}	0.93^{a}	0.64^{b}	0.60^{b}	transsulfuration	transferase	cytoplasm

Protein expression changes were represented as fold changes. The different superscript letters within the same column mean statistical significant difference at *P*<0.05 analyzed by one-way ANOVA and LSD multiple comparison of protein spots intensities (Supplementary Table 1). The numbers of biological repetitions of 2-DE analysis of casein, soy and red meat and white protein groups were 5, 5, 10 and 10, respectively. GO-BP: Gene Ontology-biological process; GO-MF: Gene Ontology-molecular function; GO-CC: Gene Ontology-cellular component.

Figure 1

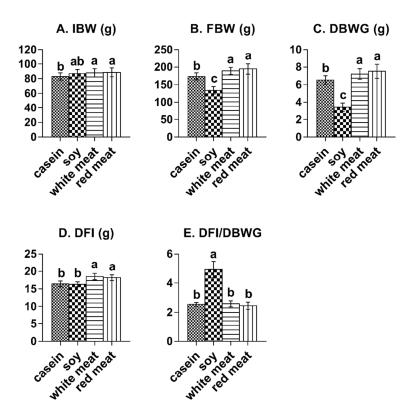


Figure 2

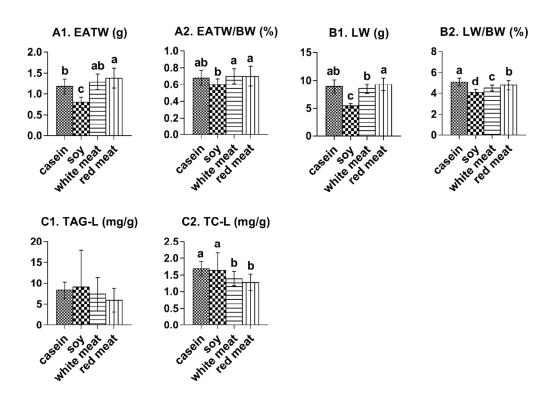


Figure 3

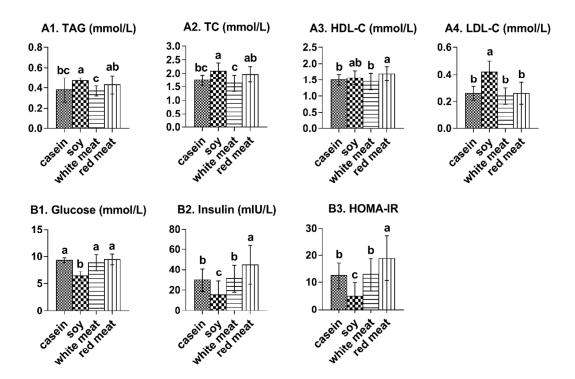
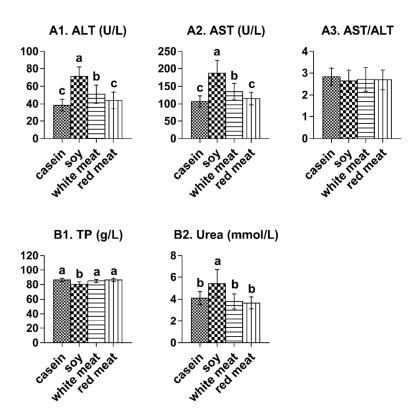
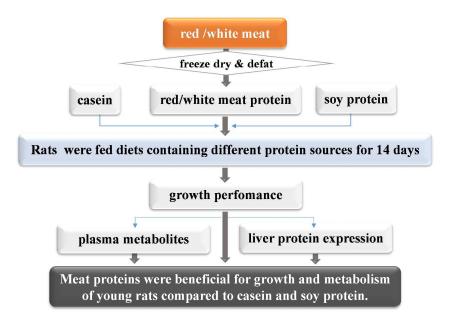




Figure 4

Graphic for table of contents

