168 research outputs found

    Comparative Proteomics Study on Human High-metastatic Large Cell Lung Cancer Cell Lines Before and After Transfecting with nm23-H1 Gene

    Get PDF
    Background and objective As a tumor metastasis suppressor gene, the functions of nm23-H1 gene are still unclear. The aim of this study is to better understand the mechanism of lung cancer metastasis and to find new biomarkers for early diagnosis and new target for therapy by conducting comparative proteomics between the human high-metastatic large cell lung cancer cell lines (L9981) and L9981-nm23-H1 (constructed with transfecting nm23-H1 gene into the L9981 cell line). Methods The total proteins of L9981 and L9981-nm23-H1 were separated by immobilized pH gradient (IPG)-based 2-dimensional electrophoresis (2-DE); the significantly differently expressed proteins were examined by mass spectrometry and analyzed by bioinformatics. Results It was observed that nm23-H1 gene transfection caused remarkable changes of the proteome of L9981 compared with L9981-nm23-H1 cells: 5 proteins were deleted, 9 proteins appeared, 16 proteins downregulated, and 12 proteins up-regulated. These proteins are involved in cell framework, signal transduction, metabolism, proliferation and metastasis. Conclusion After nm23-H1 gene is transfected into L9981, proteome in L9981 is remarkably changed. These changes of the proteome could serve as a basis for reversing the invasive and metastatic phenotype in lung cancer and elucidating the machanisms of the metastasis of lung cancer

    Purification and Characterization of a CkTLP Protein from Cynanchum komarovii Seeds that Confers Antifungal Activity

    Get PDF
    BACKGROUND: Cynanchum komarovii Al Iljinski is a desert plant that has been used as analgesic, anthelminthic and antidiarrheal, but also as a herbal medicine to treat cholecystitis in people. We have found that the protein extractions from C. komarovii seeds have strong antifungal activity. There is strong interest to develop protein medication and antifungal pesticides from C. komarovii for pharmacological or other uses. METHODOLOGY/PRINCIPAL FINDINGS: An antifungal protein with sequence homology to thaumatin-like proteins (TLPs) was isolated from C. komarovii seeds and named CkTLP. The three-dimensional structure prediction of CkTLP indicated the protein has an acid cleft and a hydrophobic patch. The protein showed antifungal activity against fungal growth of Verticillium dahliae, Fusarium oxysporum, Rhizoctonia solani, Botrytis cinerea and Valsa mali. The full-length cDNA was cloned by RT-PCR and RACE-PCR according to the partial protein sequences obtained by nanoESI-MS/MS. The real-time PCR showed the transcription level of CkTLP had a significant increase under the stress of abscisic acid (ABA), salicylic acid (SA), methyl jasmonate (MeJA), NaCl and drought, which indicates that CkTLP may play an important role in response to abiotic stresses. Histochemical staining showed GUS activity in almost the whole plant, especially in cotyledons, trichomes and vascular tissues of primary root and inflorescences. The CkTLP protein was located in the extracellular space/cell wall by CkTLP::GFP fusion protein in transgenic Arabidopsis. Furthermore, over-expression of CkTLP significantly enhanced the resistance of Arabidopsis against V. dahliae. CONCLUSIONS/SIGNIFICANCE: The results suggest that the CkTLP is a good candidate protein or gene for contributing to the development of disease-resistant crops

    Overexpression of lncRNA-MEG3 inhibits endometrial cell proliferation and invasion via miR-21–5p/DNMT3B/Twist

    Get PDF
    Recent studies have found that lncRNA-MEG3(MEG3) plays an important role in the development of EMs (Endometriosis), but the specific mechanism needs to be further explored. This study aimed to investigate the effect of MEG3 on the proliferation, invasion of EMs cells. The authors used RT-qPCR to detect the expression of MEG3 and miR-21–5p in EMs tissues and hESCs cells, MTT and Transwell to detect cell proliferation and invasion, western blotting assay to detect the expression of DNMT3B and Twist, MSP to detect the methylation of Twist. The present study's detection results showed that MEG3 was lowly expressed in EMs tissues and hESCs cells, and overexpression of MEG3 could down-regulate miR-21–5p and inhibit endometrial cell proliferation and invasion. In addition, overexpression of MEG3 upregulated the expression of DNMT3B and promoted the methylation of TWIST. In conclusion, the present findings suggest that MEG3 is downregulated in EMs tissues, and overexpression of MEG3 can promote the activity of DNA methyltransferase DNMT3B by downregulating miR-21–5p, thereby promoting the methylation of Twist, downregulating Twist level to inhibits hESCs cells proliferation and invasion

    Inhibitors of Phosphatidylinositol 3′-Kinases Promote Mitotic Cell Death in HeLa Cells

    Get PDF
    The phosphatidylinositol 3-kinase (PI3K) pathway plays an important role in many biological processes, including cell cycle progression, cell growth, survival, actin rearrangement and migration, and intracellular vesicular transport. However, the involvement of the PI3K pathway in the regulation of mitotic cell death remains unclear. In this study, we treated HeLa cells with the PI3K inhibitors, 3-methyladenine (3-MA, as well as a widely used autophagy inhibitor) and wortmannin to examine their effects on cell fates using live cell imaging. Treatment with 3-MA decreased cell viability in a time- and dose-dependent manner and was associated with caspase-3 activation. Interestingly, 3-MA-induced cell death was not affected by RNA interference-mediated knockdown (KD) of beclin1 (an essential protein for autophagy) in HeLa cells, or by deletion of atg5 (an essential autophagy gene) in mouse embryonic fibroblasts (MEFs). These data indicate that cell death induced by 3-MA occurs independently of its ability to inhibit autophagy. The results from live cell imaging studies showed that the inhibition of PI3Ks increased the occurrence of lagging chromosomes and cell cycle arrest and cell death in prometaphase. Furthermore, PI3K inhibitors promoted nocodazole-induced mitotic cell death and reduced mitotic slippage. Overexpression of Akt (the downstream target of PI3K) antagonized PI3K inhibitor-induced mitotic cell death and promoted nocodazole-induced mitotic slippage. These results suggest a novel role for the PI3K pathway in regulating mitotic progression and preventing mitotic cell death and provide justification for the use of PI3K inhibitors in combination with anti-mitotic drugs to combat cancer

    p53 Dependent Centrosome Clustering Prevents Multipolar Mitosis in Tetraploid Cells

    Get PDF
    BACKGROUND: p53 abnormality and aneuploidy often coexist in human tumors, and tetraploidy is considered as an intermediate between normal diploidy and aneuploidy. The purpose of this study was to investigate whether and how p53 influences the transformation from tetraploidy to aneuploidy. PRINCIPAL FINDINGS: Live cell imaging was performed to determine the fates and mitotic behaviors of several human and mouse tetraploid cells with different p53 status, and centrosome and spindle immunostaining was used to investigate centrosome behaviors. We found that p53 dominant-negative mutation, point mutation, or knockout led to a 2∼ 33-fold increase of multipolar mitosis in N/TERT1, 3T3 and mouse embryonic fibroblasts (MEFs), while mitotic entry and cell death were not significantly affected. In p53-/- tetraploid MEFs, the ability of centrosome clustering was compromised, while centrosome inactivation was not affected. Suppression of RhoA/ROCK activity by specific inhibitors in p53-/- tetraploid MEFs enhanced centrosome clustering, decreased multipolar mitosis from 38% to 20% and 16% for RhoA and ROCK, respectively, while expression of constitutively active RhoA in p53+/+ tetraploid 3T3 cells increased the frequency of multipolar mitosis from 15% to 35%. CONCLUSIONS: p53 could not prevent tetraploid cells entering mitosis or induce tetraploid cell death. However, p53 abnormality impaired centrosome clustering and lead to multipolar mitosis in tetraploid cells by modulating the RhoA/ROCK signaling pathway

    Tetraploid cells from cytokinesis failure induce aneuploidy and spontaneous transformation of mouse ovarian surface epithelial cells

    Get PDF
    Most ovarian cancers originate from the ovarian surface epithelium and are characterized by aneuploid karyotypes. Aneuploidy, a consequence of chromosome instability, is an early event during the development of ovarian cancers. However, how aneuploid cells are evolved from normal diploid cells in ovarian cancers remains unknown. In the present study, cytogenetic analyses of a mouse syngeneic ovarian cancer model revealed that diploid mouse ovarian surface epithelial cells (MOSECs) experienced an intermediate tetraploid cell stage, before evolving to aneuploid (mainly near-tetraploid) cells. Using long-term live-cell imaging followed by fluorescence in situ hybridization (FISH), we demonstrated that tetraploid cells originally arose from cytokinesis failure of bipolar mitosis in diploid cells, and gave rise to aneuploid cells through chromosome mis-segregation during both bipolar and multipolar mitoses. Injection of the late passage aneuploid MOSECs resulted in tumor formation in C57BL/6 mice. Therefore, we reveal a pathway for the evolution of diploid to aneuploid MOSECs and elucidate a mechanism for the development of near-tetraploid ovarian cancer cells

    Arteriopathy diagnosis in childhood arterial ischemic stroke: results of the vascular effects of infection in pediatric stroke study.

    Get PDF
    Background and purposeAlthough arteriopathies are the most common cause of childhood arterial ischemic stroke, and the strongest predictor of recurrent stroke, they are difficult to diagnose. We studied the role of clinical data and follow-up imaging in diagnosing cerebral and cervical arteriopathy in children with arterial ischemic stroke.MethodsVascular effects of infection in pediatric stroke, an international prospective study, enrolled 355 cases of arterial ischemic stroke (age, 29 days to 18 years) at 39 centers. A neuroradiologist and stroke neurologist independently reviewed vascular imaging of the brain (mandatory for inclusion) and neck to establish a diagnosis of arteriopathy (definite, possible, or absent) in 3 steps: (1) baseline imaging alone; (2) plus clinical data; (3) plus follow-up imaging. A 4-person committee, including a second neuroradiologist and stroke neurologist, adjudicated disagreements. Using the final diagnosis as the gold standard, we calculated the sensitivity and specificity of each step.ResultsCases were aged median 7.6 years (interquartile range, 2.8-14 years); 56% boys. The majority (52%) was previously healthy; 41% had follow-up vascular imaging. Only 56 (16%) required adjudication. The gold standard diagnosis was definite arteriopathy in 127 (36%), possible in 34 (9.6%), and absent in 194 (55%). Sensitivity was 79% at step 1, 90% at step 2, and 94% at step 3; specificity was high throughout (99%, 100%, and 100%), as was agreement between reviewers (κ=0.77, 0.81, and 0.78).ConclusionsClinical data and follow-up imaging help, yet uncertainty in the diagnosis of childhood arteriopathy remains. This presents a challenge to better understanding the mechanisms underlying these arteriopathies and designing strategies for prevention of childhood arterial ischemic stroke

    A COVID-19 Risk Score Combining Chest CT Radiomics and Clinical Characteristics to Differentiate COVID-19 Pneumonia From Other Viral Pneumonias

    Get PDF
    With the continued transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) throughout the world, identification of highly suspected COVID-19 patients remains an urgent priority. In this study, we developed and validated COVID-19 risk scores to identify patients with COVID-19. In this study, for patient-wise analysis, three signatures, including the risk score using radiomic features only, the risk score using clinical factors only, and the risk score combining radiomic features and clinical variables, show an excellent performance in differentiating COVID-19 from other viral-induced pneumonias in the validation set. For lesion-wise analysis, the risk score using three radiomic features only also achieved an excellent AUC value. In contrast, the performance of 130 radiologists based on the chest CT images alone without the clinical characteristics included was moderate as compared to the risk scores developed. The risk scores depicting the correlation of CT radiomics and clinical factors with COVID-19 could be used to accurately identify patients with COVID-19, which would have clinically translatable diagnostic and therapeutic implications from a precision medicine perspective
    • …
    corecore