20,664 research outputs found

    Understanding of double-curvature shaped magnetoimpedance profiles in Joule-annealed and tensioned microwires at 8-12 GHz

    Full text link
    We have investigated for the first time the combined effect of current and stress on the GMI characteristics of vanishing-magnetostrictive Co-rich microwires at microwave frequency. As the current-annealed wire is subject to certain tensile stress, one can observe a drastic transformation of field dependence of MI profiles from smooth shape of a broad peak to deformed shape of a sharp peak with the emergence of a kink on each side. It follows that three different regions- core, inner and outer shell -have been formed by the combined effect of Joule annealing, current generated magnetic field and the tensile stress. A critical field sees a drop of field sensitivity from outer to inner shell and shifts to lower value with increasing annealing current. We successfully adapted our core-shell model to a core-shell-shell model by designating different anisotropy field for each region to satisfactorily resolve the unique double-curvature shaped peaks in the field derivative MI profiles.Comment: 10 pages, 3 figures, for 59th MMM conferenc

    3D structure of hadrons by generalized distribution amplitudes and gravitational form factors

    Full text link
    Generalized distribution amplitudes (GDAs) are one type of three-dimensional structure functions, and they are related to the generalized distribution functions (GPDs) by the ss-tt crossing of the Mandelstam variables. The GDA studies provide information on three-dimensional tomography of hadrons. The GDAs can be investigated by the two-photon process γ∗γ→hhˉ\gamma^* \gamma \to h\bar h, and the GPDs are studied by the deeply virtual Compton scattering γ∗h→γh\gamma^* h \to \gamma h. The GDA studies had been pure theoretical topics, although the GPDs have been experimentally investigated, because there was no available experimental measurement. Recently, the Belle collaboration reported their measurements on the γ∗γ→π0π0\gamma^* \gamma \to \pi^0 \pi^0 differential cross section, so that it became possible to find the GDAs from their measurements. Here, we report our analysis of the Belle data for determining the pion GDAs. From the GDAs, the timelike gravitational form factors Θ1(s)\Theta_1 (s) and Θ2(s)\Theta_2 (s) can be calculated, which are mechanical (pressure, shear force) and mass (energy) form factors, respectively. They are converted to the spacelike form factors by using the dispersion relation, and then gravitational radii are evaluated for the pion. The mass and mechanical radii are obtained from Θ2\Theta_2 and Θ1\Theta_1 as ⟨r2⟩mass=0.56∼0.69\sqrt {\langle r^2 \rangle_{\text{mass}}} =0.56 \sim 0.69 fm and ⟨r2⟩mech=1.45∼1.56\sqrt {\langle r^2 \rangle_{\text{mech}}} =1.45 \sim 1.56 fm, whereas the experimental charge radius is ⟨r2⟩charge=0.672±0.008\sqrt {\langle r^2 \rangle_{\text{charge}}} =0.672 \pm 0.008 fm for the charged pion. Future developments are expected in this new field to explore gravitational physics in the quark and gluon level.Comment: 6 pages, LaTeX, 1 style file, 8 figure files, Proceedings of the XXV International Workshop on Deep-Inelastic Scattering and Related Subjects, April 3-7, 2017, University of Birmingham, U

    Anderson localization in generalized discrete time quantum walks

    Get PDF
    We study Anderson localization in a generalized discrete time quantum walk - a unitary map related to a Floquet driven quantum lattice. It is controlled by a quantum coin matrix which depends on four angles with the meaning of potential and kinetic energy, and external and internal synthetic flux. Such quantum coins can be engineered with microwave pulses in qubit chains. The ordered case yields a two-band eigenvalue structure on the unit circle which becomes completely flat in the limit of vanishing kinetic energy. Disorder in the external magnetic field does not impact localization. Disorder in all the remaining angles yields Anderson localization. In particular, kinetic energy disorder leads to logarithmic divergence of the localization length at spectral symmetry points. Strong disorder in potential and internal magnetic field energies allows to obtain analytical expressions for spectrally independent localization length which is highly useful for various applications.Comment: 11 pages, 14 figure

    A pQCD-based description of heavy and light flavor jet quenching

    Get PDF
    We present a successful description of the medium modification of light and heavy flavor jets within a perturbative QCD (pQCD) based approach. Only the couplings involving hard partons are assumed to be weak. The effect of the medium on a hard parton, per unit time, is encoded in terms of three non-perturbative, related transport coefficients which describe the transverse momentum squared gained, the elastic energy loss and diffusion in elastic energy transfer. A fit of the centrality dependence of the suppression and the azimuthal anisotropy of leading hadrons tends to favor somewhat larger transport coefficients for heavy quarks. Imposing additional constraints based on leading order (LO) Hard Thermal Loop (HTL) effective theory, leads to a worsening of the fit.Comment: v2, 4 pages, 3 figure

    Microwave spectroscopy on a double quantum dot with an on-chip Josephson oscillator

    Full text link
    We present measurements on microwave spectroscopy on a double quantum dot with an on-chip microwave source. The quantum dots are realized in the two-dimensional electron gas of an AlGaAs/GaAs heterostructure and are weakly coupled in series by a tunnelling barrier forming an 'ionic' molecular state. We employ a Josephson oscillator formed by a long Nb/Al-AlOx_x/Nb junction as a microwave source. We find photon-assisted tunnelling sidebands induced by the Josephson oscillator, and compare the results with those obtained using an externally operated microwave source.Comment: 6 pages, 4 figure

    Energy and momentum deposited into a QCD medium by a jet shower

    Get PDF
    Hard partons moving through a dense QCD medium lose energy by radiative emissions and elastic scatterings. Deposition of the radiative contribution into the medium requires rescattering of the radiated gluons. We compute the total energy loss and its deposition into the medium self-consistently within the same formalism, assuming perturbative interaction between probe and medium. The same transport coefficients that control energy loss of the hard parton determine how the energy is deposited into the medium; this allows a parameter free calculation of the latter once the former have been computed or extracted from experimental energy loss data. We compute them for a perturbative medium in hard thermal loop (HTL) approximation. Assuming that the deposited energy-momentum is equilibrated after a short relaxation time, we compute the medium's hydrodynamical response and obtain a conical pattern that is strongly enhanced by showering.Comment: 4 pages, 3 figures, revtex4, intro modified, typos correcte

    Phonon Effects on Spin-Charge Separation in One Dimension

    Full text link
    Phonon effects on spin-charge separation in one dimension are investigated through the calculation of one-electron spectral functions in terms of the recently developed cluster perturbation theory together with an optimized phonon approach. It is found that the retardation effect due to the finiteness of phonon frequency suppresses the spin-charge separation and eventually makes it invisible in the spectral function. By comparing our results with experimental data of TTF-TCNQ, it is observed that the electron-phonon interaction must be taken into account when interpreting the ARPES data.Comment: 5 pages, 5 figures, minor differences with the published version in Physical Review Letter
    • …
    corecore