12 research outputs found
Association of longitudinal trajectories of general and abdominal adiposity during middle age with mental health and well-being in late life: a prospective analysis
Single measures of adiposity markers, such as body mass index (BMI) and waist circumference (WC), are associated with adverse mental health outcomes; however, long-term patterns of adiposity and their health effects remain unclear. The current study assessed adiposity trajectories during a 14-year span beyond middle age and their relevance to mental well-being in late life, and the contribution of genetic and lifestyle factors to the trajectories. Based on a nationally representative sample with longitudinal anthropometric measures, adiposity trajectories were identified by latent mixture modeling, and logistic regression model was used to estimate their associations with mental well-being, with adjustment for confounders. Of the 3491 eligible participants included (mean [SD] age, 69.5 [8.9] years), five discrete BMI and four WC trajectory patterns were identified over 14 years. Compared with the low-stable BMI group (range, 22.8 to 22.9 kg/m²; representing stable healthy body weight), the high-stable group (range, 34.3 to 35.4 kg/m²; stable obese) was associated with increased risk of depression (odds ratio [OR], 1.63; 95 % CI, 1.28–2.07) and low subjective well-being (OR, 1.35; 95 % CI, 1.02–1.79). Compared with the low-stable WC group (range, 75 to 79 cm healthy WC), the high-increasing group (range, 114 to 121 cm) was associated with increased risk of depression (odds ratio [OR], 1.64; 95 % CI, 1.19–2.25) and low well-being (OR, 1.48; 95 % CI, 1.01–2.16). The adiposity trajectories, especially the high-stable/increasing groups, were driven by genetic factors in a dose-response manner, whereas the high/moderate-increasing groups were also behaviorally related. This longitudinal cohort study reveals that stably high trajectory patterns of central and general adiposity during middle age were associated with higher risk of depression and low well-being in late life. The findings indicate the importance of weight management beyond middle age, such as adherence to a healthy lifestyle, in promoting mental health and well-being
An In Vitro Study for Evaluating Permeability and Metabolism of Kurarinone
Kurarinone is a major component found in the dried roots of Sophora flavescens Ait. that participates in vital pharmacological activities. Recombinant CYP450 supersomes and liver microsomes were used to study the metabolic profiles of kurarinone and its inhibitory actions against cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT) enzymes. 100 μM of kurarinone strongly inhibited more than 90% of UGT1A1, UGT1A6, CYP1A2, and CYP2C9. CYP1A2 and CYP2D6 played important roles in catalyzing the biotransformation of kurarinone. Moreover, metabolism of kurarinone considerably differs among species, and metabolic characteristics were similar between monkey and human. Kurarinone demonstrated moderate permeability at values of pH 4.0 and 7.4. Our findings offer a clearer idea to understand the pharmacological and toxicological mechanisms of kurarinone
Recommended from our members
Regulation of Arabidopsis photoreceptor CRY2 by two distinct E3 ubiquitin ligases.
Cryptochromes (CRYs) are photoreceptors or components of the molecular clock in various evolutionary lineages, and they are commonly regulated by polyubiquitination and proteolysis. Multiple E3 ubiquitin ligases regulate CRYs in animal models, and previous genetics study also suggest existence of multiple E3 ubiquitin ligases for plant CRYs. However, only one E3 ligase, Cul4COP1/SPAs, has been reported for plant CRYs so far. Here we show that Cul3LRBs is the second E3 ligase of CRY2 in Arabidopsis. We demonstrate the blue light-specific and CRY-dependent activity of LRBs (Light-Response Bric-a-Brack/Tramtrack/Broad 1, 2 & 3) in blue-light regulation of hypocotyl elongation. LRBs physically interact with photoexcited and phosphorylated CRY2, at the CCE domain of CRY2, to facilitate polyubiquitination and degradation of CRY2 in response to blue light. We propose that Cul4COP1/SPAs and Cul3LRBs E3 ligases interact with CRY2 via different structure elements to regulate the abundance of CRY2 photoreceptor under different light conditions, facilitating optimal photoresponses of plants grown in nature
Recommended from our members
Regulation of Arabidopsis photoreceptor CRY2 by two distinct E3 ubiquitin ligases.
Cryptochromes (CRYs) are photoreceptors or components of the molecular clock in various evolutionary lineages, and they are commonly regulated by polyubiquitination and proteolysis. Multiple E3 ubiquitin ligases regulate CRYs in animal models, and previous genetics study also suggest existence of multiple E3 ubiquitin ligases for plant CRYs. However, only one E3 ligase, Cul4COP1/SPAs, has been reported for plant CRYs so far. Here we show that Cul3LRBs is the second E3 ligase of CRY2 in Arabidopsis. We demonstrate the blue light-specific and CRY-dependent activity of LRBs (Light-Response Bric-a-Brack/Tramtrack/Broad 1, 2 & 3) in blue-light regulation of hypocotyl elongation. LRBs physically interact with photoexcited and phosphorylated CRY2, at the CCE domain of CRY2, to facilitate polyubiquitination and degradation of CRY2 in response to blue light. We propose that Cul4COP1/SPAs and Cul3LRBs E3 ligases interact with CRY2 via different structure elements to regulate the abundance of CRY2 photoreceptor under different light conditions, facilitating optimal photoresponses of plants grown in nature