50 research outputs found

    Multi-species Ion Acceleration in 3D Magnetic Reconnection

    Full text link
    Magnetic reconnection drives explosive particle acceleration in a wide range of space and astrophysical applications. The energized particles often include multiple species (electrons, protons, heavy ions), but the underlying acceleration mechanism is poorly understood. In-situ observations of these minority heavy ions offer a more stringent test of acceleration mechanisms, but the multi-scale nature of reconnection hinders studies on heavy-ion acceleration. Here we employ hybrid simulations (fluid electron, kinetic ions) to capture 3D reconnection over an unprecedented range of scales. For the first time, our simulations demonstrate nonthermal acceleration of all available ion species into power-law spectra. The reconnection layers consist of fragmented kinking flux ropes as part of the reconnection-driven turbulence, which produces field-line chaos critical for accelerating all species. The upstream ion velocities influence the first Fermi reflection for injection. Then lower charge/mass species initiate Fermi acceleration at later times as they interact with growing flux ropes. The resulting spectra have similar power-law indices (p4.5)(p\sim4.5), but different maximum energy/nucleon (\propto(charge/mass)α)^\alpha, with α0.6\alpha\sim0.6 for low plasma β\beta, and with pp and α\alpha increasing as β\beta approaches unity. These findings are consistent with observations at heliospheric current sheets and the magnetotail, and provide strong evidence suggesting Fermi acceleration as the dominant ion-acceleration mechanism.Comment: 9 pages, 5 figure

    Improving the Orbits of the BDS-2 IGSO and MEO Satellites with Compensating Thermal Radiation Pressure Parameters

    Get PDF
    The orbit accuracy of the navigation satellites relies on the accurate knowledge of the forces on the spacecraft, in particular the non-conservative perturbations. This study focuses on the Inclined Geosynchronous Orbit (IGSO) and Medium Earth Orbit (MEO) satellites of the regional Chinese BeiDou Navigation Satellite System (BDS-2), for which apparent deficiencies of non-conservative models are identified and evidenced in the Satellite Laser Ranging (SLR) residuals. The orbit errors derived from the empirical 5-parameter Extended CODE Orbit Model (ECOM) as well as a semi-analytical adjustable box-wing model show prominent dependency on the Sun elongation angle, even in the yaw-steering attitude mode. Hence, a periodic acceleration in the normal direction of the +X surface, presumably generated by the mismodeled thermal radiation pressure, is introduced. The SLR validations reveal that the Sun elongation angle-dependent systematic errors were significantly reduced, and the orbit accuracy was improved by 10–30% to approximately 4.5 cm and 3.0 cm for the BDS-2 IGSO and MEO satellites, respectively

    Analysis of risk factors for deep vein thrombosis after spinal infection surgery and construction of a nomogram preoperative prediction model

    Get PDF
    ObjectiveTo investigate the differences in postoperative deep venous thrombosis (DVT) between patients with spinal infection and those with non-infected spinal disease; to construct a clinical prediction model using patients’ preoperative clinical information and routine laboratory indicators to predict the likelihood of DVT after surgery.MethodAccording to the inclusion criteria, 314 cases of spinal infection (SINF) and 314 cases of non-infected spinal disease (NSINF) were collected from January 1, 2016 to December 31, 2021 at Xiangya Hospital, Central South University, and the differences between the two groups in terms of postoperative DVT were analyzed by chi-square test. The spinal infection cases were divided into a thrombotic group (DVT) and a non-thrombotic group (NDVT) according to whether they developed DVT after surgery. Pre-operative clinical information and routine laboratory indicators of patients in the DVT and NDVT groups were used to compare the differences between groups for each variable, and variables with predictive significance were screened out by least absolute shrinkage and operator selection (LASSO) regression analysis, and a predictive model and nomogram of postoperative DVT was established using multi-factor logistic regression, with a Hosmer- Lemeshow goodness-of-fit test was used to plot the calibration curve of the model, and the predictive effect of the model was evaluated by the area under the ROC curve (AUC).ResultThe incidence of postoperative DVT in patients with spinal infection was 28%, significantly higher than 16% in the NSINF group, and statistically different from the NSINF group (P < 0.000). Five predictor variables for postoperative DVT in patients with spinal infection were screened by LASSO regression, and plotted as a nomogram. Calibration curves showed that the model was a good fit. The AUC of the predicted model was 0.8457 in the training cohort and 0.7917 in the validation cohort.ConclusionIn this study, a nomogram prediction model was developed for predicting postoperative DVT in patients with spinal infection. The nomogram included five preoperative predictor variables, which would effectively predict the likelihood of DVT after spinal infection and may have greater clinical value for the treatment and prevention of postoperative DVT

    Construction of a cross-species cell landscape at single-cell level.

    Get PDF
    Individual cells are basic units of life. Despite extensive efforts to characterize the cellular heterogeneity of different organisms, cross-species comparisons of landscape dynamics have not been achieved. Here, we applied single-cell RNA sequencing (scRNA-seq) to map organism-level cell landscapes at multiple life stages for mice, zebrafish and Drosophila. By integrating the comprehensive dataset of > 2.6 million single cells, we constructed a cross-species cell landscape and identified signatures and common pathways that changed throughout the life span. We identified structural inflammation and mitochondrial dysfunction as the most common hallmarks of organism aging, and found that pharmacological activation of mitochondrial metabolism alleviated aging phenotypes in mice. The cross-species cell landscape with other published datasets were stored in an integrated online portal-Cell Landscape. Our work provides a valuable resource for studying lineage development, maturation and aging

    Development and evaluation on a wireless multi-gas-sensors system for improving traceability and transparency of table grape cold chain

    Get PDF
    There is increasing requirement to improve traceability and transparency of table grapes cold chain. Key traceability indicators including temperature, humidity and gas microenvironments (e.g., CO2, O2, and SO2) based on table grape cold chain management need to be monitored and controlled. This paper presents a Wireless Multi-Gas-Sensors System (WGS2) as an effective real-time cold chain monitoring system, which consists of three units: (1) the WMN which applies the 433 MHz as the radio frequency to increase the transmission performance and forms a wireless sensor network; (2) the WAN which serves as the intermediary to connect the users and the sensor nodes to keep the sensor data without delay by the GPRS remote transmission module; (3) the signal processing unit which contains embedded software to drive the hardware to normal operation and shelf life prediction for table grapes. Then the study evaluates the WGS2 in a cold chain scenario and analyses the monitoring data. The results show that the WGS2 is effective in monitoring quality, and improving transparency and traceability of table grape cold chains. Its deploy ability and efficiency in implantation can enable the establishment of a more efficient, transparent and traceable table grape supply chain.N/

    GRACE time-varying gravity field solutions based on PANDA software

    No full text
    The conventional dynamic approach for gravity filed modelling has been implemented in the PANDA (Position and Navigation Data Analyst) software. A variant of the so-called ‘two-step’ method for gravity field modelling is adopted for this purpose, where the GRACE (Gravity Recovery and Climate Experiment) orbits are derived from the GPS (Global Positioning System) data in a first step followed by a simultaneous determination of dynamic orbit and gravity filed from the GPS-derived orbits and K-band range-rate measurements in a second step. In this way, the monthly gravity field solutions complete to degree and order 96 are produced for the period Jan. 2005 to Dec. 2010. Their performance is assessed by comparing them with the official solutions, i.e., CSR RL05, GFZ RL05a and JPL RL05. A comparison in the spectral domain in terms of geoid heights reveals that the obtained solutions present the smallest degree amplitudes at degree 30–75. A further analysis of mass changes in the spatial domain demonstrates that the main signals observed from the obtained solutions are in great agreement with those from the official solutions. Remarkably, the correlation coefficients of mass changes in large river basins from the official solutions with respect to those from the obtained solutions are all above 0.97. These results demonstrate that the obtained solutions are comparable to the official solutions. Keywords: Time-varying gravity field, PANDA (Position and Navigation Data Analyst), GRACE (Gravity Recovery and Climate Experiment
    corecore