7 research outputs found

    Low effective surface recombination in In(Ga)As/GaAs quantum dot diodes

    Get PDF
    Size dependent current-voltage measurements were performed on InGaAs quantum dot active region mesa diodes and the surface recombination velocity was extracted from current density versus perimeter/area plots using a diffusion model. An effective surface recombination value of 5.5 x 10(4) cm/s was obtained that can be reduced by more than an order of magnitude by selective oxidation of Al(0.9)Ga(0.1)As cladding layers. The values are three times smaller than those obtained for a single quantum well. The effect of p-type doping in the active region was investigated and found to increase the effective surface recombination. (C) 2011 American Institute of Physics. [doi:10.1063/1.3611387

    Ubiquitin ligase RNF125 targets PD-L1 for ubiquitination and degradation

    Get PDF
    As a critical immune checkpoint molecule, PD-L1 is expressed at significantly higher levels in multiple neoplastic tissues compared to normal ones. PD-L1/PD-1 axis is a critical target for tumor immunotherapy, blocking the PD-L1/PD-1 axis is recognized and has achieved unprecedented success in clinical applications. However, the clinical efficacy of therapies targeting the PD-1/PD-L1 pathway remains limited, emphasizing the need for the mechanistic elucidation of PD-1/PD-L1 expression. In this study, we found that RNF125 interacted with PD-L1 and regulated PD-L1 protein expression. Mechanistically, RNF125 promoted K48-linked polyubiquitination of PD-L1 and mediated its degradation. Notably, MC-38 and H22 cell lines with RNF125 knockout, transplanted in C57BL/6 mice, exhibited a higher PD-L1 level and faster tumor growth than their parental cell lines. In contrast, overexpression of RNF125 in MC-38 and H22 cells had the opposite effect, resulting in lower PD-L1 levels and delayed tumor growth compared with parental cell lines. In addition, immunohistochemical analysis of MC-38 tumors with RNF125 overexpression showed significantly increased infiltration of CD4+, CD8+ T cells and macrophages. Consistent with these findings, analyses using The Cancer Genome Atlas (TCGA) public database revealed a positive correlation of RNF125 expression with CD4+, CD8+ T cell and macrophage tumor infiltration. Moreover, RNF125 expression was significantly downregulated in several human cancer tissues, and was negatively correlated with the clinical stage of these tumors, and patients with higher RNF125 expression had better clinical outcomes. Our findings identify a novel mechanism for regulating PD-L1 expression and may provide a new strategy to increase the efficacy of immunotherapy

    Replica Symmetry Breaking in FRET-Assisted Random Laser Based on Electrospun Polymer Fiber

    Get PDF
    Spin-glass theory has been widely introduced to describe the statistical behaviors in complex physical systems. By analogy between disorder photonics and other complex systems, the glassy behavior, especially the replica symmetry breaking (RSB) phenomenon, has been observed in random lasers. However, previous studies only analyzed the statistical properties of the random laser systems with single gain material. Here, the first experimental evidence of the glassy behavior in a random laser with complex energy level structure is reported. This novel random laser is demonstrated based on the electrospun polymer fibers with the assistance of Förster resonance energy transfer (FRET). The electrospinning technology employed in the experiment herein promises high-volume production of random laser devices with multiple energy levels, enabling the comprehensive investigation of lasing properties in multi-energy level random laser system. Clear paramagnetic phase and spin-glass phase are observed in the FRET-assisted random laser under different pump energies. The RSB phase transition is verified to occur at the laser threshold, which is robust among the random lasers with different donor–acceptor ratio. The finding of RSB in FRET-assisted random laser provides a new statistical analysis method toward the laser system with complex energy level, for example, quantum cascade laser
    corecore