171 research outputs found
Maternal pre-pregnancy infection with hepatitis B virus and the risk of preterm birth: a population-based cohort study
Background Preterm birth is the leading cause of child death in children younger than 5 years. Large cohort studies in
developed countries have shown that maternal hepatitis B virus infection is associated with preterm birth, but there
is little reliable evidence from China and other developing countries, where hepatitis B virus prevalence is intermediate
or high. Hence, we designed this study to investigate the association between pre-pregnancy hepatitis B virus infection
and risk of preterm and early preterm birth.
Methods Between Jan 1, 2010, and Dec 31, 2012, we did a population-based cohort study using data from 489 965 rural
women aged 21–49 years who had singleton livebirths from 220 counties of China who participated in the National
Free Preconception Health Examination Project. Participants were divided into three groups according to their prepregnancy
status of hepatitis B virus infection: women uninfected with hepatitis B virus (control group), women who
were HBsAg positive and HBeAg negative (exposure group 1), and women who were both HBsAg and HBeAg positive
(exposure group 2). The primary outcome was preterm birth (gestation at less than 37 weeks). We used log-binomial
regression to estimate adjusted risk ratios (aRR) of preterm birth for women with pre-pregnancy hepatitis B virus
infection, and risk of early preterm birth (gestation less than 34 weeks).
Findings 489 965 women met inclusion criteria and were included in this study; of these, 20 827 (4·3%) were infected
with hepatitis B virus. Compared with women who were not infected with hepatitis B virus, women who were HBsAg
positive and HBeAg negative had a 26% higher risk of preterm birth (aRR 1·26, 95% CI 1·18–1·34) and women who
were both HBsAg and HBeAg positive had a 20% higher risk of preterm birth (aRR 1·20, 1·08–1·32). Compared with
women who were not infected with hepatitis B virus, women who were HBsAg positive and HBeAg negative
manifested an 18% higher risk of early preterm birth (gestation less than 34 weeks; aRR 1·18, 1·04–1·34) and women
who were both HBsAg and HBeAg positive had a 34% higher risk of early preterm birth (aRR 1·34, 1·10–1·61).
Maternal pre-pregnancy hepatitis B virus infection was independently associated with higher risk of preterm birth
and early preterm birth. These associations were similar in subgroups of participants as defined by baseline
characteristics.
Interpretation Besides mother-to-child transmission, the risk of preterm birth in women infected with hepatitis B
virus should not be neglected. Comprehensive programmes that focus on early detection of hepatitis B virus infection
before pregnancy and provide appropriate medical intervention for women infected with hepatitis B virus before and
during pregnancy would be helpful in improving maternal and neonatal outcomes and reducing child mortality
Seroprevalence of Cytomegalovirus and Associated Factors Among Preconception Women: A Cross-Sectional Nationwide Study in China
Background: Cytomegalovirus seroconversion during pregnancy is common and has a substantial risk of congenital infection with longterm sequale. Screening during pregnancy or vaccination have not been shown to be effective for eliminating congenital infections. Preconception screening policy has not been evaluated adequately in a large scale. This nationwide study aimed to investigate epidemiological features of cytomegalovirus seropositivity and its geographic variation among Chinese women planning a pregnancy to gather epidemiological evidence as an essential for developing novel prevention strategies.
Method: This cross-sectional sero-epidemiological survey enrolled women intending to become pregnant within 6 months in mainland China during 2010–2012. The primary outcomes in this study were cytomegalovirus Immunoglobulin G and M seropositivity. Secondary outcomes were the associations between Immunoglobulin G and Immunoglobulin M, with socio-demographic characteristics, including age, occupation, education level, place of residence, and ethnicity. The overall seropositivity and regional disparity was analyzed on the individual and regional level, respectively.
Results: This study included data from 1,564,649 women from 31 provinces in mainland China. Among participants, 38.6% (n = 603,511) were cytomegalovirus immunoglobulin G+, 0.4% (n = 6,747) were immunoglobulin M+, and 0.2% (n = 2,879) were immunoglobulin M+ and immunoglobulin G+. On individual level, participant's age, ethnicity, and residing region were significantly associated with IgG+, IgM+, and IgM+IgG+ (P 0.05). On regional level, cytomegalovirus immunoglobulin G and immunoglobulin M seropositivity was highest in the eastern region (49.5 and 0.5%, respectively), and lowest in the western region (26.9 and 0.4%, respectively). This geographic variation was also noted at the provincial level, characterized by higher provincial immunoglobulin M+ and immunoglobulin G+ rates associated with higher immunoglobulin G seropositivity. In the subgroup analysis of immunoglobulin G seropositivity, areas of higher immunoglobulin G positivity had a higher rate of immunoglobulin M+, indicating an expected increased risk of reinfection and primary infection.
Conclusions: A substantial proportion of women (>60%) were susceptible to cytomegalovirus in preconception period in China, and immunoglobulin G seropositivity was seen at a low-medium level with substantial geographic variation. Integration of cytomegalovirus antibody testing in preconception screening program based on regional immunoglobulin G seropositivity, should be considered to promote strategies directed toward preventing sero-conversion during pregnancy to reduce the risk of this congenital infection
The involvement of jasmonates and ethylene in Alternaria alternata f. sp. lycopersici toxin-induced tomato cell death
Previous studies have shown that an ethylene (ET)-dependent pathway is involved in the cell death signalling triggered by Alternaria alternata f. sp. lycopersici (AAL) toxin in detached tomato (Solanum lycopersicum) leaves. In this study, the role of jasmonic acid (JA) signalling in programmed cell death (PCD) induced by AAL toxin was analysed using a 35S::prosystemin transgenic line (35S::prosys), a JA-deficient mutant spr2, and a JA-insensitive mutant jai1. The results indicated that JA biosynthesis and signalling play a positive role in the AAL toxin-induced PCD process. In addition, treatment with the exogenous ET action inhibitor silver thiosulphate (STS) greatly suppressed necrotic lesions in 35S::prosys leaves, although 35S::prosys leaflets co-treated with AAL toxin and STS still have a significant high relative conductivity. Application of 1-aminocyclopropane-1-carboxylic acid (ACC) markedly enhanced the sensitivity of spr2 and jai1 mutants to the toxin. However, compared with AAL toxin treatment alone, exogenous application of JA to the ET-insensitive mutant Never ripe (Nr) did not alter AAL toxin-induced cell death. In addition, the reduced ET-mediated gene expression in jai1 leaves was restored by co-treatment with ACC and AAL toxin. Furthermore, JA treatment restored the decreased expression of ET biosynthetic genes but not ET-responsive genes in the Nr mutant compared with the toxin treatment alone. Based on these results, it is proposed that both JA and ET promote the AAL toxin-induced cell death alone, and the JAI1 receptor-dependent JA pathway also acts upstream of ET biosynthesis in AAL toxin-triggered PCD
Inhibitors of Phosphatidylinositol 3′-Kinases Promote Mitotic Cell Death in HeLa Cells
The phosphatidylinositol 3-kinase (PI3K) pathway plays an important role in many biological processes, including cell cycle progression, cell growth, survival, actin rearrangement and migration, and intracellular vesicular transport. However, the involvement of the PI3K pathway in the regulation of mitotic cell death remains unclear. In this study, we treated HeLa cells with the PI3K inhibitors, 3-methyladenine (3-MA, as well as a widely used autophagy inhibitor) and wortmannin to examine their effects on cell fates using live cell imaging. Treatment with 3-MA decreased cell viability in a time- and dose-dependent manner and was associated with caspase-3 activation. Interestingly, 3-MA-induced cell death was not affected by RNA interference-mediated knockdown (KD) of beclin1 (an essential protein for autophagy) in HeLa cells, or by deletion of atg5 (an essential autophagy gene) in mouse embryonic fibroblasts (MEFs). These data indicate that cell death induced by 3-MA occurs independently of its ability to inhibit autophagy. The results from live cell imaging studies showed that the inhibition of PI3Ks increased the occurrence of lagging chromosomes and cell cycle arrest and cell death in prometaphase. Furthermore, PI3K inhibitors promoted nocodazole-induced mitotic cell death and reduced mitotic slippage. Overexpression of Akt (the downstream target of PI3K) antagonized PI3K inhibitor-induced mitotic cell death and promoted nocodazole-induced mitotic slippage. These results suggest a novel role for the PI3K pathway in regulating mitotic progression and preventing mitotic cell death and provide justification for the use of PI3K inhibitors in combination with anti-mitotic drugs to combat cancer
Reprocessable Thermoset Soft Actuators.
Widely used traditional thermosets are good candidates for construction of 3D soft actuators because of their excellent stability; however, it is generally acknowledged that they cannot be reprocessed. The time-temperature equivalence principle enables reprocessing of traditional liquid crystalline epoxy thermosets (LCETs) into 3D soft actuators. Even though the transesterification reaction of LCETs is extremely slow, it is fast enough to induce a topology rearrangement and subsequent reprocessing when prolonging the transesterification time according to aforementioned principle. Therefore, LCETs can be aligned by a simple procedure. The alignment is quite stable at high temperature and remains after more than 1000 heating-cooling actuation cycles. The resulting 3D soft actuators are remouldable, reprogrammable, reconfigurable, weldable, self-healable, recyclable, and stable, which is impossible for any traditional thermosets and is therefore a compelling advance in terms of the applications open to 3D soft actuators
Proteomics study of changes in soybean lines resistant and sensitive to Phytophthora sojae
<p>Abstract</p> <p>Background</p> <p><it>Phytophthora sojae </it>causes soybean root and stem rot, resulting in an annual loss of 1-2 billion US dollars in soybean production worldwide. A proteomic technique was used to determine the effects on soybean hypocotyls of infection with <it>P. sojae</it>.</p> <p>Results</p> <p>In the present study, 46 differentially expressed proteins were identified in soybean hypocotyls infected with <it>P. sojae</it>, using two-dimensional electrophoresis and matrix-assisted laser desorption/ionization tandem time of flight (MALDI-TOF/TOF). The expression levels of 26 proteins were significantly affected at various time points in the tolerant soybean line, Yudou25, (12 up-regulated and 14 down-regulated). In contrast, in the sensitive soybean line, NG6255, only 20 proteins were significantly affected (11 up-regulated and 9 down-regulated). Among these proteins, 26% were related to energy regulation, 15% to protein destination and storage, 11% to defense against disease, 11% to metabolism, 9% to protein synthesis, 4% to secondary metabolism, and 24% were of unknown function.</p> <p>Conclusion</p> <p>Our study provides important information on the use of proteomic methods for studying protein regulation during plant-oomycete interactions.</p
Optical studies of structural phase transition in the vanadium-based kagome metal ScV6Sn6
In condensed matter physics, materials with kagome lattice exhibit exotic
emergent quantum states, including charge density wave (CDW), superconductivity
and magnetism. Very recently, hexagonal kagome metal ScV6Sn6 was found to
undergo fascinating first-order structural phase transition at around 92 K and
a 3x3x3 CDW modulation. The bulk electronic band properties are enlightened for
comprehending the origin of the structural phase transition. Here, we perform a
optical spectroscopy study on the monocrystalline compound across the
transition temperature. The structural transition gives rise to the abrupt
changes of optical spectra without observing gap development behavior. The
optical measurements revealed a sudden reconstruction of the band structure
after transition. We emphasize that the phase transition is of the first order
and distinctly different from the conventional density-wave type condensation.
Our results provide insight into the origin of the structural phase transition
in the new kagome metal compound.Comment: 7 pages, 4 figure
Characteristics of spontaneous nystagmus and its correlation to video head impulse test findings in vestibular neuritis
ObjectiveTo explore the direction and SPV (slow phase velocity) of the components of spontaneous nystagmus (SN) in patients with vestibular neuritis (VN) and the correlation between SN components and affected semicircular canals (SCCs). Additionally, we aimed to elucidate the role of directional features of peripheral SN in diagnosing acute vestibular syndrome.Materials and methodsA retrospective analysis was conducted on 38 patients diagnosed with VN in our hospital between 2022 and 2023. The direction and SPV of SN components recorded with three-dimensional videonystagmography (3D-VNG) and the video head impulse test (vHIT) gain of each SCC were analyzed as observational indicators. We examined the correlation between superior and inferior vestibular nerve damage and the direction and SPV of SN components, and vHIT gain values in VN patients.ResultsThe median illness duration of between symptom onset and moment of testing was 6 days among the 38 VN patients (17 right VN and 21 left VN). In total, 31 patients had superior vestibular neuritis (SVN), and 7 had total vestibular neuritis (TVN). Among the 38 VN patients, all had horizontal component with an SPV of (7.66 ± 5.37) °/s, 25 (65.8%) had vertical upward component with a SPV of (2.64 ± 1.63) °/s, and 26 (68.4%) had torsional component with a SPV of (4.40 ± 3.12) °/s. The vHIT results in the 38 VN patients showed that the angular vestibulo-ocular reflex (aVOR) gain of the anterior (A), lateral (L), and posterior (P) SCCs on the ipsilesional side were 0.60 ± 0.23, 0.44 ± 0.15 and 0.89 ± 0.19, respectively, while the gains on the opposite side were 0.95 ± 0.14, 0.91 ± 0.08, and 0.96 ± 0.11, respectively. There was a statistically significant difference in the aVOR gain between the A-, L-SCC on the ipsilesional side and the other SCCs (p < 0.001). The aVOR gains of A-, L-, and P-SCC on the ipsilesional sides in 31 SVN patients were 0.62 ± 0.24, 0.45 ± 0.16, and 0.96 ± 0.10, while the aVOR gains on the opposite side were 0.96 ± 0.13, 0.91 ± 0.06, and 0.98 ± 0.11, respectively. There was a statistically significant difference in the aVOR gain between the A-, L-SCC on the ipsilesional side and the other SCCs (p < 0.001). In 7 TVN patients, the aVOR gains of A-, L-, and P-SCC on the ipsilesional side were 0.50 ± 0.14, 0.38 ± 0.06, and 0.53 ± 0.07, while the aVOR gains on the opposite side were 0.93 ± 0.17, 0.90 ± 0.16, and 0.89 ± 0.09, respectively. There was a statistically significant difference in the aVOR gain between the A-, L-, and P-SCC on the ipsilesional side and the other SCCs (p < 0.001). The aVOR gain asymmetry of L-SCCs in 38 VN was 36.3%. The aVOR gain asymmetry between bilateral A-SCCs and bilateral P-SCCs for VN patients with and without a vertical upward component was 12.8% and 8.3%, which was statistically significant (p < 0.05). For VN patients with and without a torsional component, the aVOR gain asymmetry of bilateral vertical SCCs was 17.0% and 6.6%, which was statistically significant (p < 0.01). Further analysis revealed a significant positive correlation between the aVOR gain asymmetry of L-SCCs and the SPV of the horizontal component of SN in all VN patients (r = 0.484, p < 0.01), as well as between the asymmetry of bilateral vertical SCCs and the SPV of torsional component in 26 VN patients (r = 0.445, p < 0.05). However, there was no significant correlation between the aVOR gains asymmetry of bilateral A-SCCs and P-SCCs and the SPV of the vertical component in 25 VN patients.ConclusionThere is a correlation between the three-dimensional direction and SPV characteristics of SN and the aVOR gain of vHIT in VN patients. These direction characteristics can help assess different SCCs impairments in patients with unilateral vestibular diseases
Pump-induced terahertz conductivity response and peculiar bound state in Mn3Si2Te6
We report the significant enhancement on ultrafast terahertz optical
conductivity and the unexpected formation of a polaronic-like state in
semiconductor Mn3Si2Te6 at room temperature. With the absorption of pump
photons, the low-frequency terahertz photoconductivity spectrum exhibits a
significant rise, quickly forming a broad peak and subsequently shifting to
higher energy. The short-lived nature of the broad peak, as well as the
distribution of optical constants, strongly points towards a transient polaron
mechanism. Our study not only provides profound insights into the remarkable
photoelectric response of Mn3Si2Te6 but also highlights its significant
potential for future photoelectric applications
Strong nonlinear optical response and transient symmetry switching in Type-II Weyl semimetal -WP2
The topological Weyl semimetals with peculiar band structure exhibit novel
nonlinear optical enhancement phenomena even for light at optical wavelengths.
While many intriguing nonlinear optical effects were constantly uncovered in
type-I semimetals, few experimental works focused on basic nonlinear optical
properties in type-II Weyl semimetals. Here we perform a fundamental static and
time-resolved second harmonic generation (SHG) on the three dimensional Type-II
Weyl semimetal candidate -WP. Although -WP exhibits
extremely high conductivity and an extraordinarily large mean free path, the
second harmonic generation is unscreened by conduction electrons, we observed
rather strong SHG response compared to non-topological polar metals and
archetypal ferroelectric insulators. Additionally, our time-resolved SHG
experiment traces ultrafast symmetry switching and reveals that polar metal
-WP tends to form inversion symmetric metastable state after
photo-excitation. Intense femtosecond laser pulse could optically drive
symmetry switching and tune nonlinear optical response on ultrafast timescales
although the interlayer coupling of -WP is very strong. Our work is
illuminating for the polar metal nonlinear optics and potential ultrafast
topological optoelectronic applications.Comment: 8 pages, 5 figure
- …