28 research outputs found

    A novel hypoxia gene signature indicates prognosis and immune microenvironments characters in patients with hepatocellular carcinoma

    Get PDF
    Due to the lack of a suitable gene signature, it is difficult to assess the hypoxic exposure of HCC tissues. The clinical value of assessing hypoxia in HCC is short of tissue-level evidence. We tried to establish a robust and HCC-suitable hypoxia signature using microarray analysis and a robust rank aggregation algorithm. Based on the hypoxia signature, we obtained a hypoxia-associated HCC subtypes system using unsupervised hierarchical clustering and a hypoxia score system was provided using gene set variation analysis. A novel signature containing 21 stable hypoxia-related genes was constructed to effectively indicate the exposure of hypoxia in HCC tissues. The signature was validated by qRT-PCR and compared with other published hypoxia signatures in multiple large-size HCC cohorts. The subtype of HCC derived from this signature had different prognosis and other clinical characteristics. The hypoxia score obtained from the signature could be used to indicate clinical characteristics and predict prognoses of HCC patients. Moreover, we reveal a landscape of immune microenvironments in patients with different hypoxia score. In conclusion, we identified a novel HCC-suitable 21-gene hypoxia signature that could be used to estimate the hypoxia exposure in HCC tissues and indicated prognosis and a series of important clinical features in HCCs. It may enable the development of personalized counselling or treatment strategies for HCC patients with different levels of hypoxia exposure

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Protective Ability of Biogenic Antimicrobial Peptide Microcin J25 Against Enterotoxigenic Escherichia Coli-Induced Intestinal Epithelial Dysfunction and Inflammatory Responses IPEC-J2 Cells

    No full text
    Poison of intestinal induce severe health problems in human infants and young animals due to contaminating foods and feedstuffs. With the emergence of public health concerns and high-speed diffuse of drug-opposition of bacteria, the adoption of antimicrobial peptides as potential candidates in treating pathogen infections raised up. Nature Microcin J25 (MccJ25), a class of lasso peptides separated from a fecal strain of E. coli, has been replied to display powerful antimicrobial behavior. Herein, the study was to assess the usefulness of biogenic MccJ25 in the prophylaxis of ETEC K88 infection in IPEC-J2 cells. In vitro antimicrobial activity against ETEC K88 and cytotoxicity of biogenic MccJ25 were determined first. To further understand how biogenic MccJ25 mediates its impact, ETEC K88 adhesion in cells, membrane permeability [as indicated by reduced release of lactate dehydrogenase (LDH)], transepithelial electrical resistance (TEER), barrier function, and proinflammatory cytokines levels were determined in IPEC-J2 cells after treatment with biogenic MccJ25 and challenge with ETEC K88. Biogenic MccJ25 had a minimum inhibitory concentration of 0.25 μg/mL against ETEC K88, decreased ETEC K88 adhesion in cells and did not cause cytotoxicity toward cells. Furthermore, biogenic MccJ25 protects against ETEC-induced barrier dysfunction by increasing the TEER, decreasing the LDH and promoting tight junction proteins (TJPs) by promoting the assembly of occludin and claudin-1 in the tight junction complex. Biogenic MccJ25 was further found to relieve inflammation responses through modulation of interleukine-6, IL-8 and tumor necrosis factor-α levels via inhibition of mitogen-activated protein kinase (MAPK) and nuclear factor κB activation. In summary, biogenic MccJ25 can protects against ETEC K88-induced intestinal damage and inflammatory response, recommend the hidden adoption of biogenic MccJ25 as a novel prophylactic agent to reduce pathogen infection in animals, food or humans

    Table_1_Protective Ability of Biogenic Antimicrobial Peptide Microcin J25 Against Enterotoxigenic Escherichia Coli-Induced Intestinal Epithelial Dysfunction and Inflammatory Responses IPEC-J2 Cells.DOCX

    No full text
    <p>Poison of intestinal induce severe health problems in human infants and young animals due to contaminating foods and feedstuffs. With the emergence of public health concerns and high-speed diffuse of drug-opposition of bacteria, the adoption of antimicrobial peptides as potential candidates in treating pathogen infections raised up. Nature Microcin J25 (MccJ25), a class of lasso peptides separated from a fecal strain of E. coli, has been replied to display powerful antimicrobial behavior. Herein, the study was to assess the usefulness of biogenic MccJ25 in the prophylaxis of ETEC K88 infection in IPEC-J2 cells. In vitro antimicrobial activity against ETEC K88 and cytotoxicity of biogenic MccJ25 were determined first. To further understand how biogenic MccJ25 mediates its impact, ETEC K88 adhesion in cells, membrane permeability [as indicated by reduced release of lactate dehydrogenase (LDH)], transepithelial electrical resistance (TEER), barrier function, and proinflammatory cytokines levels were determined in IPEC-J2 cells after treatment with biogenic MccJ25 and challenge with ETEC K88. Biogenic MccJ25 had a minimum inhibitory concentration of 0.25 μg/mL against ETEC K88, decreased ETEC K88 adhesion in cells and did not cause cytotoxicity toward cells. Furthermore, biogenic MccJ25 protects against ETEC-induced barrier dysfunction by increasing the TEER, decreasing the LDH and promoting tight junction proteins (TJPs) by promoting the assembly of occludin and claudin-1 in the tight junction complex. Biogenic MccJ25 was further found to relieve inflammation responses through modulation of interleukine-6, IL-8 and tumor necrosis factor-α levels via inhibition of mitogen-activated protein kinase (MAPK) and nuclear factor κB activation. In summary, biogenic MccJ25 can protects against ETEC K88-induced intestinal damage and inflammatory response, recommend the hidden adoption of biogenic MccJ25 as a novel prophylactic agent to reduce pathogen infection in animals, food or humans.</p
    corecore