9 research outputs found

    Sample Size Calculation for Controlling False Discovery Proportion

    Get PDF
    The false discovery proportion (FDP), the proportion of incorrect rejections among all rejections, is a direct measure of abundance of false positive findings in multiple testing. Many methods have been proposed to control FDP, but they are too conservative to be useful for power analysis. Study designs for controlling the mean of FDP, which is false discovery rate, have been commonly used. However, there has been little attempt to design study with direct FDP control to achieve certain level of efficiency. We provide a sample size calculation method using the variance formula of the FDP under weak-dependence assumptions to achieve the desired overall power. The relationship between design parameters and sample size is explored. The adequacy of the procedure is assessed by simulation. We illustrate the method using estimated correlations from a prostate cancer dataset

    Estimating Uncertain Delayed Genetic Regulatory Networks: An Adaptive Filtering Approach

    Full text link

    The Contributions of Protein Kinase A and Smoothened Phosphorylation to Hedgehog Signal Transduction in Drosophila melanogaster

    No full text
    Protein kinase A (PKA) silences the Hedgehog (Hh) pathway in Drosophila in the absence of ligand by phosphorylating the pathway's transcriptional effector, Cubitus interruptus (Ci). Smoothened (Smo) is essential for Hh signal transduction but loses activity if three specific PKA sites or adjacent PKA-primed casein kinase 1 (CK1) sites are replaced by alanine residues. Conversely, Smo becomes constitutively active if acidic residues replace those phosphorylation sites. These observations suggest an essential positive role for PKA in responding to Hh. However, direct manipulation of PKA activity has not provided strong evidence for positive effects of PKA, with the notable exception of a robust induction of Hh target genes by PKA hyperactivity in embryos. Here we show that the latter response is mediated principally by regulatory elements other than Ci binding sites and not by altered Smo phosphorylation. Also, the failure of PKA hyperactivity to induce Hh target genes strongly through Smo phosphorylation cannot be attributed to the coincident phosphorylation of PKA sites on Ci. Finally, we show that Smo containing acidic residues at PKA and CK1 sites can be stimulated further by Hh and acts through Hh pathways that both stabilize Ci-155 and use Fused kinase activity to increase the specific activity of Ci-155

    Long-Term Engraftment and Fetal Globin Induction upon BCL11A Gene Editing in Bone-Marrow-Derived CD34+ Hematopoietic Stem and Progenitor Cells

    No full text
    To develop an effective and sustainable cell therapy for sickle cell disease (SCD), we investigated the feasibility of targeted disruption of the BCL11A gene, either within exon 2 or at the GATAA motif in the intronic erythroid-specific enhancer, using zinc finger nucleases in human bone marrow (BM) CD34+ hematopoietic stem and progenitor cells (HSPCs). Both targeting strategies upregulated fetal globin expression in erythroid cells to levels predicted to inhibit hemoglobin S polymerization. However, complete inactivation of BCL11A resulting from bi-allelic frameshift mutations in BCL11A exon 2 adversely affected erythroid enucleation. In contrast, bi-allelic disruption of the GATAA motif in the erythroid enhancer of BCL11A did not negatively impact enucleation. Furthermore, BCL11A exon 2-edited BM-CD34+ cells demonstrated a significantly reduced engraftment potential in immunodeficient mice. Such an adverse effect on HSPC function was not observed upon BCL11A erythroid-enhancer GATAA motif editing, because enhancer-edited CD34+ cells achieved robust long-term engraftment and gave rise to erythroid cells with elevated levels of fetal globin expression when chimeric BM was cultured ex vivo. Altogether, our results support further clinical development of the BCL11A erythroid-specific enhancer editing in BM-CD34+ HSPCs as an autologous stem cell therapy in SCD patients
    corecore