185 research outputs found

    Expression of TLR4/MyD88 in CRC

    Get PDF
    BACKGROUND: The Toll-like receptor (TLR) 4 signalling pathway has been shown to have oncogenic effects in vitro and in vivo. To demonstrate the role of TLR4 signalling in colon tumourigenesis, we examined the expression of TLR4 and myeloid differentiation factor 88 (MyD88) in colorectal cancer (CRC). METHODS: The expression of TLR4 and MyD88 in 108 CRC samples, 15 adenomas, and 15 normal mucosae was evaluated by immunohistochemistry, and the correlations between their immunoscores and clinicopathological variables, including disease-free survival (DFS) and overall survival (OS), were analysed. RESULTS: Compared with normal mucosae and adenomas, 20% cancers displayed high expression of TLR4, and 23% cancers showed high expression of MyD88. The high expression of TLR4 and MyD88 was significantly correlated with liver metastasis (P=0.0001, P=0.0054). In univariate analysis, the high expression of TLR4 was significantly associated with shorter OS (hazard ratio (HR): 2.17; 95% confidence interval (95% CI): 1.15–4.07; P=0.015). The high expression of MyD88 expression was significantly associated with poor DFS and OS (HR: 2.33; 95% CI: 1.31–4.13; P=0.0038 and HR: 3.03; 95% CI: 1.67–5.48; P=0.0002). The high combined expression of TLR4 and MyD88 was also significantly associated with poor DFS and OS (HR: 2.25; 95% CI: 1.27–3.99; P=0.0053 and HR: 2.97; 95% CI: 1.64–5.38; P=0.0003). Multivariate analysis showed that high expressions of TLR4 (OS: adjusted HR: 1.88; 95% CI: 0.99–3.55; P=0.0298) and MyD88 (DFS: adjusted HR: 1.93; 95% CI: 1.01–3.67; P=0.0441; OS: adjusted HR: 2.25; 95% CI: 1.17–4.33; P=0.0112) were independent prognostic factors of OS. Furthermore, high co-expression of TLR4/MyD88 was strongly associated with both poor DFS and OS. CONCLUSION: Our findings suggest that high expression of TLR4 and MyD88 is associated with liver metastasis and is an independent predictor of poor prognosis in patients with CRC

    Frequent overexpression of HMGA1 and 2 in gastroenteropancreatic neuroendocrine tumours and its relationship to let-7 downregulation

    Get PDF
    The molecular pathogenesis of gastroenteropancreatic (GEP) neuroendocrine tumours (NETs) remains to be elucidated. High-mobility group A (HMGA) proteins play important roles in the regulation of transcription, differentiation, and neoplastic transformation. In this study, the expression of HMGA1 and HMGA2 was studied in 55 GEP NETs. Overexpression of HMGA1 and 2 was frequently detected in GEP NETs compared with normal tissues. Nuclear immunostaining of HMGA1 and 2 was observed in GEP NETs (38 of 55, 69%; 40 of 55, 73%, respectively). High-mobility group A2 expression increased from well-differentiated NET (WNET) to well-differentiated neuroendocrine carcinoma (WNEC) and poorly differentiated NEC (PNEC) (P<0.005) and showed the highest level in stage IV tumours (P<0.01). In WNECs, the expression of HMGA1 and 2 was significantly higher in metastatic tumours than those without metastasis (P<0.05). Gastroenteropancreatic NETs in foregut showed the highest level of HMGA1 and 2 expressions. MIB-1 labelling index (MIB-1 LI) correlated with HMGA1 and 2 overexpression (R=0.28, P<0.05; R=0.434, P<0.001; respectively) and progressively increased from WNETs to WNECs and PNECs (P<0.001). Let-7 expression was addressed in 6 normal organs, 30 tumour samples, and 24 tumour margin non-tumour tissues. Compared with normal tissues, let-7 downregulation was frequent in NETs (19 of 30, 63%). Higher expression of HMGA1 and 2 was frequently observed in tumours with let-7 significant reduction (53, 42%, respectively). The reverse correlation could be detected between HMGA1 and let-7 (P<0.05). Our findings suggested that HMGA1 and 2 overexpression and let-7 downregulation might relate to pathogenesis of GEP NETs

    Fibroblast growth factor 19 expression correlates with tumor progression and poorer prognosis of hepatocellular carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although fibroblast growth factor 19 (FGF19) can promote liver carcinogenesis in mice, its involvement in human hepatocellular carcinoma (HCC) has not been well investigated. FGF19, a member of the FGF family, has unique specificity for its receptor FGFR4. This study aimed to clarify the involvement of FGF19 in the development of HCC.</p> <p>Methods</p> <p>We investigated human FGF19 and FGFR4 expression in 40 hepatocellular carcinoma specimens using quantitative real-time reverse transcription polymerase chain reaction (RT-PCR) analysis and immunohistochemistry. Moreover, we examined the expression and the distribution of FGF19 and FGFR4 in 5 hepatocellular carcinoma cell lines (HepG2, HuH7, HLE, HLF, and JHH7) using RT-PCR and immunohistochemistry. To test the role of the FGF19/FGFR4 system in tumor progression, we used recombinant FGF19 protein and small interfering RNA (siRNA) of <it>FGF19 </it>and <it>FGFR4 </it>to regulate their concentrations.</p> <p>Results</p> <p>We found that FGF19 was significantly overexpressed in HCCs as compared with corresponding noncancerous liver tissue (<it>P </it>< 0.05). Univariate and multivariate analyses revealed that the tumor <it>FGF19 </it>mRNA expression was an independent prognostic factor for overall and disease-free survival. Moreover, we found that the FGF19 recombinant protein could increase the proliferation (<it>P </it>< 0.01, <it>n </it>= 12) and invasion (<it>P </it>< 0.01, <it>n </it>= 6) capabilities of human hepatocellular carcinoma cell lines and inhibited their apoptosis (<it>P </it>< 0.01, <it>n </it>= 12). Inversely, decreasing <it>FGF19 </it>and <it>FGFR4 </it>expression by siRNA significantly inhibited proliferation and increased apoptosis in JHH7 cells (<it>P </it>< 0.01, <it>n </it>= 12). The postoperative serum FGF19 levels in HCC patients was significantly lower than the preoperative levels (<it>P </it>< 0.01, <it>n </it>= 29).</p> <p>Conclusions</p> <p>FGF19 is critically involved in the development of HCCs. Targeting FGF19 inhibition is an attractive potential therapeutic strategy for HCC.</p

    Methylation-associated down-regulation of RASSF1A and up-regulation of RASSF1C in pancreatic endocrine tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>RASSF1A </it>gene silencing by DNA methylation has been suggested as a major event in pancreatic endocrine tumor (PET) but <it>RASSF1A </it>expression has never been studied. The <it>RASSF1 </it>locus contains two CpG islands (<it>A </it>and <it>C</it>) and generates seven transcripts (<it>RASSF1A</it>-<it>RASSF1G</it>) by differential promoter usage and alternative splicing.</p> <p>Methods</p> <p>We studied 20 primary PETs, their matched normal pancreas and three PET cell lines for the (i) methylation status of the <it>RASSF1 </it>CpG islands using methylation-specific PCR and pyrosequencing and (ii) expression of <it>RASSF1 </it>isoforms by quantitative RT-PCR in 13 cases. CpG island A methylation was evaluated by methylation-specific PCR (MSP) and by quantitative methylation-specific PCR (qMSP); pyrosequencing was applied to quantify the methylation of 51 CpGs also encompassing those explored by MSP and qMSP approaches.</p> <p>Results</p> <p>MSP detected methylation in 16/20 (80%) PETs and 13/20 (65%) normal pancreas. At qMSP, 11/20 PETs (55%) and 9/20 (45%) normals were methylated in at least 20% of <it>RASSF1A </it>alleles.</p> <p>Pyrosequencing showed variable distribution and levels of methylation within and among samples, with PETs having average methylation higher than normals in 15/20 (75%) cases (<it>P </it>= 0.01). The evaluation of mRNA expression of <it>RASSF1 </it>variants showed that: i) <it>RASSF1A </it>was always expressed in PET and normal tissues, but it was, on average, expressed 6.8 times less in PET (<it>P </it>= 0.003); ii) <it>RASSF1A </it>methylation inversely correlated with its expression; iii) <it>RASSF1 </it>isoforms were rarely found, except for <it>RASSF1B </it>that was always expressed and <it>RASSF1C </it>whose expression was 11.4 times higher in PET than in normal tissue (<it>P </it>= 0.001). A correlation between <it>RASSF1A </it>expression and gene methylation was found in two of the three PET cell lines, which also showed a significant increase in <it>RASSF1A </it>expression upon demethylating treatment.</p> <p>Conclusions</p> <p><it>RASSF1A </it>gene methylation in PET is higher than normal pancreas in no more than 75% of cases and as such it cannot be considered a marker for this neoplasm. <it>RASSF1A </it>is always expressed in PET and normal pancreas and its levels are inversely correlated with gene methylation. Isoform <it>RASSF1C </it>is overexpressed in PET and the recent demonstration of its involvement in the regulation of the Wnt pathway points to a potential pathogenetic role in tumor development.</p

    DNA methylation patterns in bladder cancer and washing cell sediments: a perspective for tumor recurrence detection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epigenetic alterations are a hallmark of human cancer. In this study, we aimed to investigate whether aberrant DNA methylation of cancer-associated genes is related to urinary bladder cancer recurrence.</p> <p>Methods</p> <p>A set of 4 genes, including <it>CDH1 </it>(E-cadherin), <it>SFN </it>(stratifin), <it>RARB </it>(retinoic acid receptor, beta) and <it>RASSF1A </it>(Ras association (RalGDS/AF-6) domain family 1), had their methylation patterns evaluated by MSP (Methylation-Specific Polymerase Chain Reaction) analysis in 49 fresh urinary bladder carcinoma tissues (including 14 cases paired with adjacent normal bladder epithelium, 3 squamous cell carcinomas and 2 adenocarcinomas) and 24 cell sediment samples from bladder washings of patients classified as cancer-free by cytological analysis (control group). A third set of samples included 39 archived tumor fragments and 23 matched washouts from 20 urinary bladder cancer patients in post-surgical monitoring. After genomic DNA isolation and sodium bisulfite modification, methylation patterns were determined and correlated with standard clinic-histopathological parameters.</p> <p>Results</p> <p><it>CDH1 </it>and <it>SFN </it>genes were methylated at high frequencies in bladder cancer as well as in paired normal adjacent tissue and exfoliated cells from cancer-free patients. Although no statistically significant differences were found between <it>RARB </it>and <it>RASSF1A </it>methylation and the clinical and histopathological parameters in bladder cancer, a sensitivity of 95% and a specificity of 71% were observed for <it>RARB </it>methylation (Fisher's Exact test (p < 0.0001; OR = 48.89) and, 58% and 17% (p < 0.05; OR = 0.29) for <it>RASSF1A </it>gene, respectively, in relation to the control group.</p> <p>Conclusion</p> <p>Indistinct DNA hypermethylation of <it>CDH1 </it>and <it>SFN </it>genes between tumoral and normal urinary bladder samples suggests that these epigenetic features are not suitable biomarkers for urinary bladder cancer. However, <it>RARB </it>and <it>RASSF1A </it>gene methylation appears to be an initial event in urinary bladder carcinogenesis and should be considered as defining a panel of differentially methylated genes in this neoplasia in order to maximize the diagnostic coverage of epigenetic markers, especially in studies aiming at early recurrence detection.</p
    • …
    corecore