8,051 research outputs found

    SphereFed: Hyperspherical Federated Learning

    Full text link
    Federated Learning aims at training a global model from multiple decentralized devices (i.e. clients) without exchanging their private local data. A key challenge is the handling of non-i.i.d. (independent identically distributed) data across multiple clients that may induce disparities of their local features. We introduce the Hyperspherical Federated Learning (SphereFed) framework to address the non-i.i.d. issue by constraining learned representations of data points to be on a unit hypersphere shared by clients. Specifically, all clients learn their local representations by minimizing the loss with respect to a fixed classifier whose weights span the unit hypersphere. After federated training in improving the global model, this classifier is further calibrated with a closed-form solution by minimizing a mean squared loss. We show that the calibration solution can be computed efficiently and distributedly without direct access of local data. Extensive experiments indicate that our SphereFed approach is able to improve the accuracy of multiple existing federated learning algorithms by a considerable margin (up to 6% on challenging datasets) with enhanced computation and communication efficiency across datasets and model architectures.Comment: European Conference on Computer Vision 202

    Parity Violation in Neutrino Transport and the Origin of Pulsar Kicks

    Get PDF
    In proto-neutron stars with strong magnetic fields, the neutrino-nucleon scattering/absorption cross sections depend on the direction of neutrino momentum with respect to the magnetic field axis, a manifestation of parity violation in weak interactions. We study the deleptonization and thermal cooling (via neutrino emission) of proto-neutron stars in the presence of such asymmetric neutrino opacities. Significant asymmetry in neutrino emission is obtained due to multiple neutrino-nucleon scatterings. For an ordered magnetic field threading the neutron star interior, the fractional asymmetry in neutrino emission is about 0.006(B/1014G)0.006 (B/10^{14}G), corresponding to a pulsar kick velocity of about 200(B/1014G)200 (B/10^{14}G) km/s for a total radiated neutrino energy of 3×10533\times 10^{53} erg.Comment: AASTeX, 10 pages including 2 ps figures; ApJ Letter in press (March 10, 1998). Shortened to agree with the published versio

    Orbit- and Atom-Resolved Spin Textures of Intrinsic, Extrinsic and Hybridized Dirac Cone States

    Full text link
    Combining first-principles calculations and spin- and angle-resolved photoemission spectroscopy measurements, we identify the helical spin textures for three different Dirac cone states in the interfaced systems of a 2D topological insulator (TI) of Bi(111) bilayer and a 3D TI Bi2Se3 or Bi2Te3. The spin texture is found to be the same for the intrinsic Dirac cone of Bi2Se3 or Bi2Te3 surface state, the extrinsic Dirac cone of Bi bilayer state induced by Rashba effect, and the hybridized Dirac cone between the former two states. Further orbit- and atom-resolved analysis shows that s and pz orbits have a clockwise (counterclockwise) spin rotation tangent to the iso-energy contour of upper (lower) Dirac cone, while px and py orbits have an additional radial spin component. The Dirac cone states may reside on different atomic layers, but have the same spin texture. Our results suggest that the unique spin texture of Dirac cone states is a signature property of spin-orbit coupling, independent of topology

    Transplantation of Ciliary Neurotrophic Factor-Expressing Adult Oligodendrocyte Precursor Cells Promotes Remyelination and Functional Recovery after SpinalCord Injury

    Get PDF
    Demyelination contributes to the dysfunction after traumatic spinal cord injury (SCI). We explored whether the combination of neurotrophic factors and transplantation of adult rat spinal cord oligodendrocyte precursor cells (OPCs) could enhance remyelination and functional recovery after SCI. Ciliary neurotrophic factor (CNTF) was the most effective neurotrophic factor to promote oligodendrocyte (OL) differentiation and survival of OPCs in vitro. OPCs were infected with retroviruses expressing enhanced green fluorescent protein (EGFP) or CNTF and transplanted into the contused adult thoracic spinal cord 9 d after injury. Seven weeks after transplantation, the grafted OPCs survived and integrated into the injured spinal cord. The survival of grafted CNTF-OPCs increased fourfold compared with EGFP-OPCs. The grafted OPCs differentiated into adenomatus polyposis coli (APC+) OLs, and CNTF significantly increased the percentage of APC+ OLs from grafted OPCs. Immunofluorescent and immunoelectron microscopic analyses showed that the grafted OPCs formed central myelin sheaths around the axons in the injured spinal cord. The number of OL-remyelinated axons in ventrolateral funiculus (VLF) or lateral funiculus (LF) at the injured epicenter was significantly increased in animals that received CNTF-OPC grafts compared with all other groups. Importantly, 75% of rats receiving CNTF-OPC grafts recovered transcranial magnetic motor-evoked potential and magnetic interenlargement reflex responses, indicating that conduction through the demyelinated axons in VLF or LF, respectively, was partially restored. More importantly, recovery of hindlimb locomotor function was significantly enhanced in animals receiving grafts of CNTF-OPCs. Thus, combined treatment with OPC grafts expressing CNTF can enhance remyelination and facilitate functional recovery after traumatic SCI

    Human influence on the record-breaking cold event in January of 2016 in Eastern China

    Get PDF
    Anthropogenic influences are estimated to have reduced the likelihood of an extreme cold event in midwinter with the intensity equal to or stronger than the record of 2016 in eastern China by about two‐thirds
    • 

    corecore