74 research outputs found

    Galaxy Clusters Associated with Short GRBs. II. Predictions for the Rate of Short GRBs in Field and Cluster Early-Type Galaxies

    Get PDF
    We determine the relative rates of short GRBs in cluster and field early-type galaxies as a function of the age probability distribution of their progenitors, P(\tau) \propto \tau^n. This analysis takes advantage of the difference in the growth of stellar mass in clusters and in the field, which arises from the combined effects of the galaxy stellar mass function, the early-type fraction, and the dependence of star formation history on mass and environment. This approach complements the use of the early- to late-type host galaxy ratio, with the added benefit that the star formation histories of early-type galaxies are simpler than those of late-type galaxies, and any systematic differences between progenitors in early- and late-type galaxies are removed. We find that the ratio varies from R(cluster)/R(field) ~ 0.5 for n = -2 to ~ 3 for n = 2. Current observations indicate a ratio of about 2, corresponding to n ~ 0 - 1. This is similar to the value inferred from the ratio of short GRBs in early- and late-type hosts, but it differs from the value of n ~ -1 for NS binaries in the Milky Way. We stress that this general approach can be easily modified with improved knowledge of the effects of environment and mass on the build-up of stellar mass, as well as the effect of globular clusters on the short GRB rate. It can also be used to assess the age distribution of Type Ia supernova progenitors.Comment: ApJ accepted versio

    High mass photon pairs in ℓ+ℓ−γγ events at LEP

    Full text link

    Measurement of the inclusive b→τνX branching ratio

    Full text link

    Inclusive search for the charmless radiative decay of the b-quark (b → sγ)

    Full text link

    Measurement of ηc production in untagged two-photon collisions at LEP

    Full text link

    Measurement of inclusive η production in hadronic decays of the Z0

    Full text link

    A measurement of τ polarization in Z0 decays

    Full text link

    Combination strategy targeting the hypoxia inducible factor-1 alpha with mammalian target of rapamycin and histone deacetylase inhibitors

    No full text
    PURPOSE: The hypoxia-inducible factor-1 alpha (HIF-alpha) is a key regulator of tumor angiogenesis. Mammalian target of rapamycin (mTOR) and histone deacetylase (HDAC) inhibitors suppress tumor-induced angiogenesis by reducing tumor HIF-1 alpha protein expression. Thus, we hypothesized that combination treatment of rapamycin and the HDAC inhibitor LBH589 has greater antiangiogenic and antitumor activity compared with single agents. EXPERIMENTAL DESIGN: To evaluate the effect of LBH589 and rapamycin on HIF-1 alpha in human prostate PC3, renal C2 carcinoma cell lines, and endothelial cells (human umbilical vein endothelial cells), we did Western blot analysis. To determine the antitumor activity of LBH589 and rapamycin, cell proliferation assays and xenograft experiments were conducted. RESULTS: Western blotting showed that combination treatment of human umbilical vein endothelial cells, C2 and PC3, significantly reduced HIF-1 alpha protein expression compared with single agents. Treatment with rapamycin resulted in inhibition of the downstream signals of the mTOR pathway and increased phosphorylation of Akt in C2 cells, whereas the constitutively activated Akt in PC3 cells was not modulated. LBH589 decreased both constitutively expressed and rapamycin-induced phosphorylated Akt levels in PC3 and C2 cell lines. In clonogenic assays, the combination treatment had a greater inhibitory effect in PC3 cells (93 +/- 1.4%) compared with single agents (66 +/- 9% rapamycin and 43 +/- 4% LBH589). Combination of rapamycin and LBH589 significantly inhibited PC3 and C2 in vivo tumor growth and angiogenesis as measured by tumor weight and microvessel density. CONCLUSIONS: Combination treatment of mTOR and HDAC inhibitors represents a rational therapeutic strategy targeting HIF-1 alpha that warrants clinical testing
    corecore