478 research outputs found

    Nuclear-Targeted Deleted in Liver Cancer 1 (DLC1) Is Less Efficient in Exerting Its Tumor Suppressive Activity Both In Vitro and In Vivo

    Get PDF
    BACKGROUND: Deleted in liver cancer 1 (DLC1) serves as an important RhoGTPase activating protein (RhoGAP) protein that terminates active RhoA signaling in human cancers. Increasing evidence has demonstrated that the tumor suppressive activity of DLC1 depends not only on RhoGAP activity, but also relies on proper focal adhesion localization through its interaction with tensin family proteins. Recently, there are reports showing that DLC1 can also be found in the nucleus; however, the existence and the relative tumor suppressive activity of nuclear DLC1 have never been clearly addressed. METHODOLOGY AND PRINCIPAL FINDINGS: We herein provide new evidence that DLC1 protein, which predominantly associated with focal adhesions and localized in cytosol, dynamically shuttled between cytoplasm and nucleus. Treatment of cells with nuclear export blocker, Leptomycin B (LMB), retained DLC1 in the nucleus. To understand the nuclear entry of DLC1, we identified amino acids 600-700 of DLC1 as a novel region that is important for its nuclear localization. The tumor suppressive activity of nuclear DLC1 was directly assessed by employing a nuclear localization signal (NLS) fusion variant of DLC1 (NLS-DLC1) with preferential nuclear localization. In SMMC-7721 HCC cells, expression of NLS-DLC1 failed to suppress colony formation and actin stress fiber formation in vitro. The abrogated tumor suppressive activity of nuclear DLC1 was demonstrated for the first time in vivo by subcutaneously injecting p53(-/-) RasV12 hepatoblasts with stable NLS-DLC1 expression in nude mice. The injected hepatoblasts with NLS-DLC1 expression effectively formed tumors when compared with the non-nuclear targeted DLC1. CONCLUSIONS/SIGNIFICANCE: Our study identified a novel region responsible for the nuclear entry of DLC1 and demonstrated the functional difference of DLC1 in different cellular compartments both in vitro and in vivo

    Deleted in Liver Cancer 1 (DLC1) Negatively Regulates Rho/ROCK/MLC Pathway in Hepatocellular Carcinoma

    Get PDF
    Aims: Deleted in liver cancer 1 (DLC1), a member of RhoGTPase activating protein (GAP) family, is known to have suppressive activities in tumorigenicity and cancer metastasis. However, the underlying molecular mechanisms of how DLC1 suppresses cell motility have not been fully elucidated. Rho-kinase (ROCK) is an immediate down-stream effector of RhoA in mediating cellular cytoskeletal events and cell motility. In the present study, we aimed to investigate the effects of DLC1 on Rho/ROCK signaling pathway in hepatocellular carcinoma (HCC). Methodology/Principal Findings: We demonstrated that DLC1 negatively regulated ROCK-dependent actomyosin contractility. From immumofluorescence study, we found that ectopic expression of DLC1 abrogated Rho/ROCK-mediated cytoskeletal reorganization including formation of stress fibers and focal adhesions. It also downregulated cortical phosphorylation of myosin light chain 2 (MLC2). These inhibitory events by DLC1 were RhoGAP-dependent, as RhoGAP-deficient mutant of DLC1 (DLC1 K714E) abolished these inhibitory events. In addition, from western study, DLC1 inhibited ROCK-related myosin light chain phosphatase targeting unit 1 (MYPT1) phosphorylation at Threonine 853. By examining cell morphology under microscope, we found that ectopic expression of dominant-active ROCK released cells from DLC1-induced cytoskeletal collapse and cell shrinkage. Conclusion: Our data suggest that DLC1 negatively regulates Rho/ROCK/ MLC2. This implicates a ROCK-mediated pathway of DLC1 in suppressing metastasis of HCC cells and enriches our understanding in the molecular mechanisms involved in the progression of hepatocellular carcinoma. Β© 2008 Wong et al.published_or_final_versio

    Blockade of insulin-like growth factors increases efficacy of paclitaxel in metastatic breast cancer.

    Get PDF
    Breast cancer remains the leading cause of cancer death in women owing to metastasis and the development of resistance to established therapies. Macrophages are the most abundant immune cells in the breast tumor microenvironment and can both inhibit and support cancer progression. Thus, gaining a better understanding of how macrophages support cancer could lead to the development of more effective therapies. In this study, we find that breast cancer-associated macrophages express high levels of insulin-like growth factors 1 and 2 (IGFs) and are the main source of IGFs within both primary and metastatic tumors. In total, 75% of breast cancer patients show activation of insulin/IGF-1 receptor signaling and this correlates with increased macrophage infiltration and advanced tumor stage. In patients with invasive breast cancer, activation of Insulin/IGF-1 receptors increased to 87%. Blocking IGF in combination with paclitaxel, a chemotherapeutic agent commonly used to treat breast cancer, showed a significant reduction in tumor cell proliferation and lung metastasis in pre-clinical breast cancer models compared to paclitaxel monotherapy. Our findings provide the rationale for further developing the combination of paclitaxel with IGF blockers for the treatment of invasive breast cancer, and Insulin/IGF1R activation and IGF+ stroma cells as potential biomarker candidates for further evaluation

    Neutrophils in cancer: neutral no more

    Get PDF
    Neutrophils are indispensable antagonists of microbial infection and facilitators of wound healing. In the cancer setting, a newfound appreciation for neutrophils has come into view. The traditionally held belief that neutrophils are inert bystanders is being challenged by the recent literature. Emerging evidence indicates that tumours manipulate neutrophils, sometimes early in their differentiation process, to create diverse phenotypic and functional polarization states able to alter tumour behaviour. In this Review, we discuss the involvement of neutrophils in cancer initiation and progression, and their potential as clinical biomarkers and therapeutic targets

    CCL2-driven inflammation increases mammary gland stromal density and cancer susceptibility in a transgenic mouse model.

    Get PDF
    Abstract Background Macrophages play diverse roles in mammary gland development and breast cancer. CC-chemokine ligand 2 (CCL2) is an inflammatory cytokine that recruits macrophages to sites of injury. Although CCL2 has been detected in human and mouse mammary epithelium, its role in regulating mammary gland development and cancer risk has not been explored. Methods Transgenic mice were generated wherein CCL2 is driven by the mammary epithelial cell-specific mouse mammary tumour virus 206 (MMTV) promoter. Estrous cycles were tracked in adult transgenic and non-transgenic FVB mice, and mammary glands collected at the four different stages of the cycle. Dissected mammary glands were assessed for cyclical morphological changes, proliferation and apoptosis of epithelium, macrophage abundance and collagen deposition, and mRNA encoding matrix remodelling enzymes. Another cohort of control and transgenic mice received carcinogen 7,12-Dimethylbenz(a)anthracene (DMBA) and tumour development was monitored weekly. CCL2 protein was also quantified in paired samples of human breast tissue with high and low mammographic density. Results Overexpression of CCL2 in the mammary epithelium resulted in an increased number of macrophages, increased density of stroma and collagen and elevated mRNA encoding matrix remodelling enzymes lysyl oxidase (LOX) and tissue inhibitor of matrix metalloproteinases (TIMP)3 compared to non-transgenic controls. Transgenic mice also exhibited increased susceptibility to development of DMBA-induced mammary tumours. In a paired sample cohort of human breast tissue, abundance of epithelial-cell-associated CCL2 was higher in breast tissue of high mammographic density compared to tissue of low mammographic density. Conclusions Constitutive expression of CCL2 by the mouse mammary epithelium induces a state of low level chronic inflammation that increases stromal density and elevates cancer risk. We propose that CCL2-driven inflammation contributes to the increased risk of breast cancer observed in women with high mammographic density

    Monocyte chemoattractant protein-1/CCL2 produced by stromal cells promotes lung metastasis of 4T1 murine breast cancer cells

    Get PDF
    MCP-1/CCL2 plays an important role in the initiation and progression of cancer. Since tumor cells produce MCP-1, they are considered to be the main source of this chemokine. Here, we examined whether MCP-1 produced by non-tumor cells affects the growth and lung metastasis of 4T1 breast cancer cells by transplanting them into the mammary pad of WT or MCP-1βˆ’/βˆ’ mice. Primary tumors at the injected site grew similarly in both mice; however, lung metastases were markedly reduced in MCP-1βˆ’/βˆ’ mice, with significantly longer mouse survival. High levels of MCP-1 mRNA were detected in tumors growing in WT, but not MCP-1βˆ’/βˆ’ mice. Serum MCP-1 levels were increased in tumor-bearing WT, but not MCP-1βˆ’/βˆ’ mice. Transplantation of MCP-1βˆ’/βˆ’ bone marrow cells into WT mice did not alter the incidence of lung metastasis, whereas transplantation of WT bone marrow cells into MCP-1βˆ’/βˆ’ mice increased lung metastasis. The primary tumors of MCP-1βˆ’/βˆ’ mice consistently developed necrosis earlier than those of WT mice and showed decreased infiltration by macrophages and reduced angiogenesis. Interestingly, 4T1 cells that metastasized to the lung constitutively expressed elevated levels of MCP-1, and intravenous injection of 4T1 cells producing a high level of MCP-1 resulted in increased tumor foci in the lung of WT and MCP-1βˆ’/βˆ’ mice. Thus, stromal cell-derived MCP-1 in the primary tumors promotes lung metastasis of 4T1 cells, but tumor cell-derived MCP-1 can also contribute once tumor cells enter the circulation. A greater understanding of the source and role of this chemokine may lead to novel strategies for cancer treatment

    Transition of tumor-associated macrophages from MHC class IIhi to MHC class IIlow mediates tumor progression in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tumor-associated macrophages (TAMs) are the most abundant immune cells within the tumor stroma and play a crucial role in tumor development. Although clinical investigations indicate that high levels of macrophage (MΦ) infiltration into tumors are associated with a poor prognosis, the exact role played by TAMs during tumor development remains unclear. The present study aimed to investigate dynamic changes in TAM major histocompatibility complex (MHC) class II expression levels and to assess the effects of these changes on tumor progression.</p> <p>Results</p> <p>Significant inhibition of tumor growth in the murine hepatocellular carcinoma Hepa1-6 model was closely associated with partial TAM depletion. Strikingly, two distinct TAM subsets were found to coexist within the tumor microenvironment during Hepa1-6 tumor development. An MHC class II<sup>hi </sup>TAM population appeared during the early phase of tumor development and was associated with tumor suppression; however, an MHC class II<sup>low </sup>TAM population became increasingly predominant as the tumor progressed.</p> <p>Conclusions</p> <p>Tumor progression was positively correlated with increasing infiltration of the tumor tissues by MHC class II<sup>low </sup>TAMs. Thus, targeting the transition of MΦ may be a novel strategy for drug development and immunotherapy.</p

    Melanoma Cell Expression of CD200 Inhibits Tumor Formation and Lung Metastasis via Inhibition of Myeloid Cell Functions

    Get PDF
    CD200 is a cell surface glycoprotein that functions through engaging CD200 receptor on cells of the myeloid lineage and inhibits their functions. Expression of CD200 has been implicated in a variety of human cancer cells including melanoma cells and has been thought to play a protumor role. To investigate the role of cancer cell expression of CD200 in tumor formation and metastasis, we generated CD200-positive and CD200-negative B16 melanoma cells. Subcutaneous injection of CD200-positive B16 melanoma cells inhibited tumor formation and growth in C57BL/6 mice but not in Rag1βˆ’/βˆ’C57BL/6 mice. However, i.v. injection of CD200-positive B16 melanoma cells dramatically inhibited tumor foci formation in the lungs of both C57BL/6 and Rag1βˆ’/βˆ’C57BL6 mice. Flow cytometry analysis revealed higher expression of CD200R in Gr1+ myeloid cells in the lung than in peripheral myeloid cells. Depletion of Gr1+ cells or stimulation of CD200R with an agonistic antibody in vivo dramatically inhibited tumor foci formation in the lungs. In addition, treatment with tumor antigen specific CD4 or CD8 T cells or their combination yielded a survival advantage for CD200 positive tumor bearing mice over mice bearing CD200-negative tumors. Taken together, we have revealed a novel role for CD200-CD200R interaction in inhibiting tumor formation and metastasis. Targeting CD200R may represent a novel approach for cancer immunotherapy

    Effect of Polymorphisms in XPD on Clinical Outcomes of Platinum-Based Chemotherapy for Chinese Non-Small Cell Lung Cancer Patients

    Get PDF
    PURPOSE: Xeroderma pigmentosum group D (XPD) codes for a DNA helicase involved in nucleotide excision repair that removes platinum-induced DNA damage. Genetic polymorphisms of XPD may affect DNA repair capacity and lead to individual differences in the outcome of patients after chemotherapy. This study aims to identify whether XPD polymorphisms affect clinical efficacy among advanced non-small cell lung cancer (NSCLC) patients treated with platinum-based chemotherapy. EXPERIMENTAL DESIGN: 353 stage III-IV NSCLC patients receiving platinum-based chemotherapy as the first-line treatment were enrolled in this study. Four potentially functional XPD polymorphisms (Arg(156)Arg, Asp(312)Asn, Asp(711)Asp and Lys(751)Gln) were genotyped by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry or PCR-based sequencing. RESULTS: Variant genotypes of XPD Asp(312)Asn, Asp(711)Asp and Lys(751)Gln were significantly associated with poorer NSCLC survival (P = 0.006, 0.006, 0.014, respectively, by log-rank test). The most common haplotype GCA (in order of Asp(312)Asn, Asp(711)Asp and Lys(751)Gln) also exhibited significant risk effect on NSCLC survival (log-rank P = 0.001). This effect was more predominant for patients with stage IIIB disease (P = 2.21Γ—10(-4), log-rank test). Increased risks for variant haplotypes of XPD were also observed among patients with performance status of 0-1 and patients with adenocarcinoma. However, no significant associations were found between these polymorphisms, chemotherapy response and PFS. CONCLUSIONS: Our study provides evidence for the predictive role of XPD Asp(312)Asn, Asp(711)Asp and Lys(751)Gln polymorphisms/haplotype on NSCLC prognosis in inoperable advanced NSCLC patients treated with platinum-based chemotherapy

    Structure of an Enzyme-Derived Phosphoprotein Recognition Domain

    Get PDF
    Membrane Associated Guanylate Kinases (MAGUKs) contain a protein interaction domain (GKdom) derived from the enzyme Guanylate Kinase (GKenz). Here we show that GKdom from the MAGUK Discs large (Dlg) is a phosphoprotein recognition domain, specifically recognizing the phosphorylated form of the mitotic spindle orientation protein Partner of Inscuteable (Pins). We determined the structure of the Dlg-Pins complex to understand the dramatic transition from nucleotide kinase to phosphoprotein recognition domain. The structure reveals that the region of the GKdom that once served as the GMP binding domain (GBD) has been co-opted for protein interaction. Pins makes significantly more contact with the GBD than does GMP, but primarily with residues that are conserved between enzyme and domain revealing the versatility of the GBD as a platform for nucleotide and protein interactions. Mutational analysis reveals that the GBD is also used to bind the GK ligand MAP1a, suggesting that this is a common mode of MAGUK complex assembly. The GKenz undergoes a dramatic closing reaction upon GMP binding but the protein-bound GKdom remains in the β€˜open’ conformation indicating that the dramatic conformational change has been lost in the conversion from nucleotide kinase to phosphoprotein recognition domain
    • …
    corecore