219 research outputs found

    Permanent Deformation of Earth Dam Due to Earthquake

    Get PDF
    This paper combines the equivalent nodal force method suggested by serf et al, (1976) and equivalent inertial force method proposed by Taniguchi et al (1983, 1987). The former is fine to utilize seed\u27s strain potential but the stress-strain curve is obtained only by static test, while the latter uses dynamic stress-strain curve, but the determination of direction of equivalent inertial force is rather difficult. The writers use the equivalent nodal force by average shear stress (τav=0.65 τmax) and assume it\u27s direction to be coincided with static shear stress. Also dynamic stress-residual shear strain curve is obtained by dynamic testing

    Joint association of sleep duration and physical activity with cognitive performance among Chinese adults: an analysis of nationally representative survey data

    Get PDF
    BackgroundAlthough previous studies have identified that both physical activity and sleep problems are independently associated with decreased risk of cognitive function. However, the joint association of physical activity and sleep duration with cognitive function was rarely studied.MethodsA total of 21,128 participants who had records from the China Family Panel Studies (CFPS) in 2018 were included in this study. Linear regression was used to examine the associations of joint between physical activity and sleep duration with cognitive function in the nationally representative survey data.ResultsCompared with individuals reporting 150 min/week or more of activity, those reporting no physical activity had a 116% higher risk of getting lower vocabulary scores (coefficient: -1.16, 95% CI: −1.55 ~ −0.78) and a 61% higher risk of getting lower mathematics scores (coefficient: -0.61, 95% CI: −0.78 ~ −0.44). Compared with those who slept for 7–10 h/day, those who slept more than 10 h/day had the lower vocabulary scores (coefficient: −1.34, 95% CI: −1.86 ~ −0.83) and mathematics scores (coefficient: −0.68, −0.94 ~ −0.42). The results of joint analysis showed that the adjusted coefficient for vocabulary scores were − 2.58 (95% CI, −3.33 ~ −1.82) for individuals reporting no physical activity and sleeping for 10 h/day, and − 1.00 (95% CI, −1.88 ~ −0.12) for individuals reporting more than 150 min/week and sleeping for 10 h/day, compared with those who reported a sleep duration for 7–10 h/day and more than 150 min/week physical activity, Any level of physical activity combined with longer sleep duration (≥10 h/day) was associated with a higher risk of getting low mathematics scores.ConclusionAppropriate sleep and sufficient physical activity together may have amplified association on cognitive performance, highlighting the importance of a comprehensive healthy lifestyle

    3D printed architected hollow sphere foams with low-frequency phononic band gaps

    Get PDF
    We experimentally and numerically investigate elastic wave propagation in a class of lightweight architected materials composed of hollow spheres and binders. Elastic wave transmission tests demonstrate the existence of vibration mitigation capability in the proposed architected foams, which is validated against the numerically predicted phononic band gap. We further describe that the phononic band gap properties can be significantly altered through changing hollow sphere thickness and binder size in the architected foams. Importantly, our results indicate that by increasing the stiffness contrast between hollow spheres and binders, the phononic band gaps are broadened and shifted toward a low-frequency range. At the threshold stiffness contrast of 50, the proposed architected foam requires only a volume fraction of 10.8% while exhibiting an omnidirectional band gap size exceeding 130%. The proposed design paradigm and physical mechanisms are robust and applicable to architected foams with other topologies, thus providing new opportunities to design phononic metamaterials for low-frequency vibration control

    Diaqua­bis(2,2′-biimidazole)cobalt(II) 4,4′-dicarboxy­biphenyl-3,3′-di­car­boxylate

    Get PDF
    In the title compound, [Co(C6H6N4)2(H2O)2](C16H8O8), the CoII cation and the organic anion occupy different crystallographic inversion centres and, as a consequence, the asymmetric unit comprises two half-mol­ecules. The benzene groups are coplanar. The four coordinating N atoms of the two bidentate biimidazole ligands define the equatorial plane of a slightly distorted octa­hedral CoO2N4 geometry, and the water O atoms lie in the axial coordination sites. Translational (a,) and inversion-related symmetry operations link the Co complex mol­ecules and the negatively charged carboxyl­ate anions via inter­molecular N—H⋯O and O—H⋯O hydrogen bonds into sheets parallel to (01). The coordinated water mol­ecules connect the sheets through O—H⋯O hydrogen bonds, forming a three-dimensional framework. In addition, two intra­molecular O—H⋯O hydrogen bonds are observed between the carboxyl and carboxyl­ate groups

    Erosion reduces soil microbial diversity, network complexity and multifunctionality

    Get PDF
    While soil erosion drives land degradation, the impact of erosion on soil microbial communities and multiple soil functions remains unclear. This hinders our ability to assess the true impact of erosion on soil ecosystem services and our ability to restore eroded environments. Here we examined the effect of erosion on microbial communities at two sites with contrasting soil texture and climates. Eroded plots had lower microbial network complexity, fewer microbial taxa, and fewer associations among microbial taxa, relative to non-eroded plots. Soil erosion also shifted microbial community composition, with decreased relative abundances of dominant phyla such as Proteobacteria, Bacteroidetes, and Gemmatimonadetes. In contrast, erosion led to an increase in the relative abundances of some bacterial families involved in N cycling, such as Acetobacteraceae and Beijerinckiaceae. Changes in microbiota characteristics were strongly related with erosion-induced changes in soil multifunctionality. Together, these results demonstrate that soil erosion has a significant negative impact on soil microbial diversity and functionality

    Recent developments in the immunopathology of COVID-19

    Full text link
    There has been an important change in the clinical characteristics and immune profile of Coronavirus disease 2019 (COVID-19) patients during the pandemic thanks to the extensive vaccination programs. Here, we highlight recent studies on COVID-19, from the clinical and immunological characteristics to the protective and risk factors for severity and mortality of COVID-19. The efficacy of the COVID-19 vaccines and potential allergic reactions after administration are also discussed. The occurrence of new variants of concerns such as Omicron BA.2, BA.4, and BA.5 and the global administration of COVID-19 vaccines have changed the clinical scenario of COVID-19. Multisystem inflammatory syndrome in children (MIS-C) may cause severe and heterogeneous disease but with a lower mortality rate. Perturbations in immunity of T cells, B cells, and mast cells, as well as autoantibodies and metabolic reprogramming may contribute to the long-term symptoms of COVID-19. There is conflicting evidence about whether atopic diseases, such as allergic asthma and rhinitis, are associated with a lower susceptibility and better outcomes of COVID-19. At the beginning of pandemic, the European Academy of Allergy and Clinical Immunology (EAACI) developed guidelines that provided timely information for the management of allergic diseases and preventive measures to reduce transmission in the allergic clinics. The global distribution of COVID-19 vaccines and emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with reduced pathogenic potential dramatically decreased the morbidity, severity, and mortality of COVID-19. Nevertheless, breakthrough infection remains a challenge for disease control. Hypersensitivity reactions (HSR) to COVID-19 vaccines are low compared to other vaccines, and these were addressed in EAACI statements that provided indications for the management of allergic reactions, including anaphylaxis to COVID-19 vaccines. We have gained a depth knowledge and experience in the over 2 years since the start of the pandemic, and yet a full eradication of SARS-CoV-2 is not on the horizon. Novel strategies are warranted to prevent severe disease in high-risk groups, the development of MIS-C and long COVID-19

    Identifying long-term stable refugia for dominant Castanopsis species of evergreen broad-leaved forests in East Asia: A tool for ensuring their conservation

    Get PDF
    Identifying and protecting refugia is a priority for conservation management under projected anthropogenic climate change. We have two main objectives: the first is to explore the spatial (East Asia) and temporal (Last Glacial Maximum to year 2070) distribution patterns of dominant Castanopsis species of evergreen broad-leaved forests, also the relation with their niche breadths; the second is to identify long-term stable refugia for preserving these species and provide a framework of conservation strategies. We find that there is an extraordinary richness with 32 dominant Castanopsis species, and they form both a geographically and climatically almost unbroken connection from ca. 5°N to 38°N, having thus ecological significance. During the Mid-Holocene and, particularly, the Last Glacial Maximum, the predicted suitable areas of the species as a whole were larger than those in the present. By 2070, potentially suitable areas with high richness of dominant Castanopsis species will be reduced by 94.5 % on average. No correlation between species niche breadths and distribution ranges is found, which could be due to regional climate stability. Mountains of southwestern and southern Yunnan in China are identified as climatically long-term stable refugia for 7¿9 Castanopsis species. We recommend that these refugia have the highest priority of conservation to prevent their extinction. Our suggested urgent measures include improving the effectiveness of currently protected Castanopsis species and expanding the network of protected areas to cover a larger fraction of the refugia, as well as ensuring Castanopsis species natural regeneration potential in fragmented and natural secondary forest areas.This study received financial support from the Major Program for Basic Research Project of Yunnan Province, China (202101BC070002), the Science and Technology Department of Yunnan University, China (2019YNU002), the Ministry of Science and Technology of China (2015FY210200-15), the Spanish Ministry of Science and Innovation (grant PID2020-119163GB-I00 funded by MCIN/AEI/10.13039/501100011033), the Environment Research and Technology Development Fund of the Environmental Restoration and Conservation Agency of Japan (JPMEERF20202002), and the Northeastern Research Institute of Petrified Wood and Mineral Resources, Nakhon Ratchasima Rajabhat University, Thailand.Keywords 1. Introduction 2. Materials and methods 2.1. Data collection and notations 2.2. Ecological niche modeling 2.3. Data analyses 3. Results 3.1. Dominant Castanopsis species in East Asia today: richness and distribution patterns 3.2. Richness of dominant Castanopsis species shaped by climate change 3.3. Niche groups and niche breadths of dominant Castanopsis species 3.4. Climatically long-term stable refugia 4. Discussion 4.1. Richness of dominant Castanopsis species shaped by climate change 4.2. Niche groups and niche breadths of dominant Castanopsis species 4.3. Long-term stable refugia and conservation strategies 5. Conclusions CRediT authorship contribution statement Declaration of competing interest Acknowledgements Appendix A. Supplementary material Reference

    Polar surface structure of oxide nanocrystals revealed with solid-state NMR spectroscopy

    Get PDF
    Abstract: Compared to nanomaterials exposing nonpolar facets, polar-faceted nanocrystals often exhibit unexpected and interesting properties. The electrostatic instability arising from the intrinsic dipole moments of polar facets, however, leads to different surface configurations in many cases, making it challenging to extract detailed structural information and develop structure-property relations. The widely used electron microscopy techniques are limited because the volumes sampled may not be representative, and they provide little chemical bonding information with low contrast of light elements. With ceria nanocubes exposing (100) facets as an example, here we show that the polar surface structure of oxide nanocrystals can be investigated by applying 17O and 1H solid-state NMR spectroscopy and dynamic nuclear polarization, combined with DFT calculations. Both CeO4-termination reconstructions and hydroxyls are present for surface polarity compensation and their concentrations can be quantified. These results open up new possibilities for investigating the structure and properties of oxide nanostructures with polar facets

    SPINK1, PRSS1, CTRC, and CFTR genotypes influence disease onset and clinical outcomes in chronic pancreatitis

    Get PDF
    Objectives Rare pathogenic variants in the SPINK1, PRSS1, CTRC, and CFTR genes have been strongly associated with a risk of developing chronic pancreatitis (CP). However, their potential impact on the age of disease onset and clinical outcomes, as well as their potential interactions with environmental risk factors, remain unclear. These issues are addressed here in a large Chinese CP cohort. Methods We performed targeted next-generation sequencing of the four CP-associated genes in 1061 Han Chinese CP patients and 1196 controls. To evaluate gene–environment interactions, the patients were divided into three subgroups, idiopathic CP (ICP; n = 715), alcoholic CP (ACP; n = 206), and smoking-associated CP (SCP; n = 140). The potential impact of rare pathogenic variants on the age of onset of CP and clinical outcomes was evaluated using the Kaplan–Meier model. Results We identified rare pathogenic genotypes involving the SPINK1, PRSS1, CTRC, and/or CFTR genes in 535 (50.42%) CP patients but in only 71 (5.94%) controls (odds ratio = 16.12; P < 0.001). Mutation-positive patients had significantly earlier median ages at disease onset and at diagnosis of pancreatic stones, diabetes mellitus and steatorrhea than mutation-negative ICP patients. Pathogenic genotypes were present in 57.1, 39.8, and 32.1% of the ICP, ACP, and SCP patients, respectively, and influenced age at disease onset and clinical outcomes in all subgroups. Conclusions We provide evidence that rare pathogenic variants in the SPINK1, PRSS1, CTRC, and CFTR genes significantly influence the age of onset and clinical outcomes of CP. Extensive gene–environment interactions were also identified

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve
    corecore