405 research outputs found

    R\'{e}nyi Divergence Deep Mutual Learning

    Full text link
    This paper revisits Deep Mutual Learning (DML), a simple yet effective computing paradigm. We propose using R\'{e}nyi divergence instead of the KL divergence, which is more flexible and tunable, to improve vanilla DML. This modification is able to consistently improve performance over vanilla DML with limited additional complexity. The convergence properties of the proposed paradigm are analyzed theoretically, and Stochastic Gradient Descent with a constant learning rate is shown to converge with O(1)\mathcal{O}(1)-bias in the worst case scenario for nonconvex optimization tasks. That is, learning will reach nearby local optima but continue searching within a bounded scope, which may help mitigate overfitting. Finally, our extensive empirical results demonstrate the advantage of combining DML and R\'{e}nyi divergence, which further improves generalized models

    Case Report: First attempt by off-label use of tenecteplase to treat acute extensive portal venous system thrombosis

    Get PDF
    Acute extensive portal venous system thrombosis (PVST) can cause lethal complications. Herein, we have for the first time reported the use of anticoagulation combined with systemic thrombolysis by tenecteplase in a male patient with a diagnosis of acute extensive PVST but without liver cirrhosis. After thrombolytic therapy, abdominal pain obviously alleviated. However, urinary bleeding developed, which was reversible by stopping thrombolytic drugs. Finally, this case developed cavernous transformation of the portal vein without portal venous recanalization. In future, the efficacy and safety of tenecteplase should be explored in acute extensive PVST cases

    Editorial: Nanotechnological Advances in Biosensors

    Get PDF
    A biosensor is a physicochemical or hybrid physical-chemical-biological device that detects a biological molecule, organism, or process. Because of the nature of their targets, biosensors need to be faster, smaller, more sensitive, and more specific than nearly all of their physicochemical counterparts or the traditional methods that they are designed to replace. Speed is of the essence in medical diagnosis as it permits for rapid, accurate treatment and does not allow patients to be lost to follow-up. Small size and greater sensitivity mean less-invasive sampling and detection of molecules such as neurotransmitters or hormones at biologically-relevant levels. Greater specificity allows assays to be performed in complex fluids such as blood or urine without false negative or false positive results. [...

    Organic cation transporter 1 (OCT1) modulates multiple cardiometabolic traits through effects on hepatic thiamine content.

    Get PDF
    A constellation of metabolic disorders, including obesity, dysregulated lipids, and elevations in blood glucose levels, has been associated with cardiovascular disease and diabetes. Analysis of data from recently published genome-wide association studies (GWAS) demonstrated that reduced-function polymorphisms in the organic cation transporter, OCT1 (SLC22A1), are significantly associated with higher total cholesterol, low-density lipoprotein (LDL) cholesterol, and triglyceride (TG) levels and an increased risk for type 2 diabetes mellitus, yet the mechanism linking OCT1 to these metabolic traits remains puzzling. Here, we show that OCT1, widely characterized as a drug transporter, plays a key role in modulating hepatic glucose and lipid metabolism, potentially by mediating thiamine (vitamin B1) uptake and hence its levels in the liver. Deletion of Oct1 in mice resulted in reduced activity of thiamine-dependent enzymes, including pyruvate dehydrogenase (PDH), which disrupted the hepatic glucose-fatty acid cycle and shifted the source of energy production from glucose to fatty acids, leading to a reduction in glucose utilization, increased gluconeogenesis, and altered lipid metabolism. In turn, these effects resulted in increased total body adiposity and systemic levels of glucose and lipids. Importantly, wild-type mice on thiamine deficient diets (TDs) exhibited impaired glucose metabolism that phenocopied Oct1 deficient mice. Collectively, our study reveals a critical role of hepatic thiamine deficiency through OCT1 deficiency in promoting the metabolic inflexibility that leads to the pathogenesis of cardiometabolic disease

    Skepticism and Euroskepticism in British Politics

    Get PDF
    This article provides an analysis of the variants of Euroskepticism voiced in the British political discourse on furthering integration of the United Kingdom with Europe

    Research on Comprehensive Evaluation and Early Warning of Transmission Lines' Operation Status Based on Dynamic Cloud Computing

    Get PDF
    The current methods for evaluating the operating condition of electricity transmission lines (ETLs) and providing early warning have several problems, such as the low correlation of data, ignoring the influence of seasonal factors, and strong subjectivity. This paper analyses the sensitive factors that influence dynamic key evaluation indices such as grounding resistance, sag, and wire corrosion, establishes the evaluation criteria of the ETL operation state, and proposes five ETL status levels and seven principles for selecting evaluation indices. Nine grade I evaluation indices and twenty-nine grade II evaluation indices, including passageway and meteorological environments, are determined. The cloud model theory is embedded and used to propose a warning technology for the operation state of ETLs based on inspection defect parameters and the cloud model. Combined with the inspection defect parameters of a line in the Baicheng district of Jilin Province and the critical evaluation index data such as grounding resistance, sag, and wire corrosion, which are used to calculate the timeliness of the data, the solid line is evaluated. The research shows that the dynamic evaluation model is correct and that the ETL status evaluation and early warning method have reasonable practicability

    Celastrol Inhibits the Growth of Ovarian Cancer Cells in vitro and in vivo

    Get PDF
    Celastrol is a natural triterpene isolated from the Chinese plant Thunder God Vine with potent antitumor activity. However, the effect of celastrol on the growth of ovarian cancer cells in vitro and in vivo is still unclear. In this study, we found that celastrol induced cell growth inhibition, cell cycle arrest in G2/M phase and apoptosis with the increased intracellular reactive oxygen species (ROS) accumulation in ovarian cancer cells. Pretreatment with ROS scavenger N-acetyl-cysteine totally blocked the apoptosis induced by celastrol. Additionally, celastrol inhibited the growth of ovarian cancer xenografts in nude mice. Altogether, these findings suggest celastrol is a potential therapeutic agent for treating ovarian cancer

    Protective effect of heat-processed Gynostemma pentaphyllum on high fat diet-induced glucose metabolic disorders mice

    Get PDF
    Glucose metabolic disorders (GMD) can promote insulin resistance (IR) and diabetes, and damage liver and kidney. Gynostemma pentaphyllum is commonly used in the clinical treatment of diabetes, but the research on its main active constituents and GMD has not been reported yet. This study explores the therapeutic potential of gypenosides of heat-processed Gynostemma pentaphyllum (HGyp) on high-fat diet-induced GMD in mice. HGyp was administered at different doses for 12 weeks. The investigation encompassed an array of parameters, including body weight, blood lipids, blood glucose, and liver tissue components. Metabolomic and network analyses were conducted to uncover potential targets and pathways associated with HGyp treatment. The results revealed that HGyp alleviated GMD by reducing body weight, blood glucose, and improving blood lipids levels, while increasing liver glycogen and antioxidant enzyme levels. Additionally, HGyp exhibited protective effects on liver and kidney health by reducing tissue damage. Fourteen blood components were detected by LC-MS. Metabolomic and network analyses indicated the potential engagement of the AGE-RAGE signaling pathway in the therapeutic effects of HGyp.Furthermore, Western blot and ELISA assays confirmed that HGyp upregulated GLO1 and GLUT4 while down-regulating AGEs and RAGE expression in liver tissue. In light of these findings, HGyp demonstrates promise as a potential therapeutic candidate for combating GMD, warranting further exploration in the development of therapeutic strategies or functional products
    • …
    corecore