18 research outputs found

    Investigation of optical and electrical properties of Cobalt-doped Ge-Sb-S thin film

    Get PDF
    Amorphous Germanium Antimony Sulphide (Ge-Sb-S) doped with Cobalt (Co) have been deposited on glass substrates by thermal evaporation technique on a glass substrate. The films deposited onto glass substrates are characterized by Energy Dispersive X-ray Fluorescence Spectrometer, UV–VIS spectrophotometer, Raman spectroscopy, and Capacitance-Voltage Keithley meter. The optical band gap was calculated from the UV–Visible spectrum and found to be 2.05 eV. Raman spectroscopy measurements reveal that a wide band spectrum from 300 to 410 cm−1 centered at 355 cm−1. The Raman shift peaks at 325 cm−1 and 350 cm−1 are as-signed to the bond stretching mode Sb-S and Ge-S, respectively. In addition, from the obtained Raman spectra it is concluded that the presence of Co doped with Ge-Sb-S. The capacitance and conductance versus voltage measurements were performed at different temperatures. The results show a slight increase in the capacitance with temperature and it reaches a maximum value around 150 °C, and eventually it becomes negative. This behavior is interpreted in terms of the nucleation growth process and the thermally activated conduction process with measured activation energy of 0.79 eV.This work is funded by the University Program for Advanced Research - United Arab Emirates University , (project no. 31S313 ).Scopu

    Study on anisotropies and momentum densities in AlN, GaN and InN by positron annihilation

    Get PDF
    The independent particle model (IPM) coupled with empirical pseudopotential method (EPM) was used to compute the thermalized positron charge densities in specific family of binary tetrahedrally coordinated crystals of formula ANB8-N. Initial results show a clear asymmetrical positron charge distribution relative to the bond center. It is observed that the positron density is maximum in the open interstices and is excluded not only, from the ion cores but also to a considerable degree from the valence bonds. Electron-positron momentum densities are calculated for the (001,110) planes. The results are used to analyze the positron effects in AlN, GaN and InN compounds. Our computational technique provides the theoretical means of interpreting the k-space densities obtained experimentally using the twodimensional angular correlation of annihilation radiation (2D-ACAR)

    Fabrication and characterization of cellulose acetate-based nanofibers and nanofilms for H2S gas sensing application

    Get PDF
    Electrospun nanofibers and solution-casting nanofilms were produced from an environmentally friendly cellulose acetate (CA) blended with glycerol (as an ionic liquid (IL)), mixed with polypyrrole (PPy, a conducting polymer) and doped with tungsten oxide (WO3) nanoparticles. The sensing membranes fabricated were used to detect H2S gas at room temperature and shown to exhibit high performance. The results revealed that the lowest operating temperature of both nanofiber and nanofilm sensors was 20oC, with a minimum gas detection limit of 1 ppm. Moreover, the sensor exhibits a reasonably fast response, with a minimum average response time of 22.8 and 31.7 s for the proposed nanofiber and nanofilm based sensors, respectively. Furthermore, the results obtained indicated an excellent reproducibility, long-term stability, and low humidity dependence. Such distinctive properties coupled with an easy fabrication technique provide a promising potential to achieve a precise monitoring of harmful H2S gas in both indoor and outdoor atmospheres

    Nucleosomes in gene regulation: theoretical approaches

    Get PDF
    This work reviews current theoretical approaches of biophysics and bioinformatics for the description of nucleosome arrangements in chromatin and transcription factor binding to nucleosomal organized DNA. The role of nucleosomes in gene regulation is discussed from molecular-mechanistic and biological point of view. In addition to classical problems of this field, actual questions of epigenetic regulation are discussed. The authors selected for discussion what seem to be the most interesting concepts and hypotheses. Mathematical approaches are described in a simplified language to attract attention to the most important directions of this field

    Fabrication and characterization of size-selected Cu nanoclusters using a magnetron sputtering source

    No full text
    Copper nanoclusters are used widely in applications such as glucose and gas sensors. A physical method is used to produce copper nanoclusters utilizing an ultra-high vacuum (UHV) system. Using a quadrupole mass filter (QMF), the size distribution of the nanoclusters is determined. It is found that varying the source parameters controls the size of the produced Cu nanoclusters. Increasing the aggregation length increases the nanocluster size. Varying the inert gas flow rate has a minor effect on the size at low aggregation length. On the other hand, at high aggregation length the size increases with increasing the gas flow. The results are interpreted in terms of the nucleation time and a two-body collision model between nanoclusters. Moreover, the band gap is measured for different sizes of CuO nanoclusters. ? 2018 Elsevier B.V.Center for Innovative Technology, United Arab Emirates UniversityScopu

    Ultrasensitive and low temperature gas sensor based on electrospun organic-inorganic nanofibers

    Get PDF
    Organic-inorganic hybrid material is one of the most promising materials for high performance gas sensors due to its improved properties like high sensitivity, selectivity, fast response time, flexibility and low power consumption. This work presents ultrasensitive, selective and low operating temperature H2S gas sensor. It is based on metal-oxide nanoparticles (NPs) embedded in organic semiconductor polymeric nanofibrous (NFs) membrane containing an ionic liquid (IL). In this context, high surface area Tungsten(VI) oxide- Polyvinyl alcohol (WO3-PVA) nanofibrous composite sensor material with average diameter of 130 ± 20 nm were synthesized with controlled morphology and interconnectivity through an electrospinning technique. The obtained WO3 NPs-containing PVA nanofibrous sensing material was evaluated for its ability as a potential sensor for H2S gas at different operating temperatures and gas concentrations. Results demonstrated that the fabricated sensor is ultrasensitive and selective for H2S gas and exhibit an excellent reproducibility, and long-term stability. Furthermore, the sensor showed adequate response in a humid environment. It was also shown that nanofibers' membrane porosity and thickness control the sensing performance. The optimum operating temperature of 40°C with a detection threshold as low as 100 ppb with a response time of 16.37 ± 1.42 s were achieved. This combined high sensitivity, fast response time and low operating temperature (low-power consumption) provides clear evidence of the sensor's potential to outperform existing devices, which could pave the way for a commercial exploitation

    Fast and Excellent Enhanced Photocatalytic Degradation of Methylene Blue Using Silver-Doped Zinc Oxide Submicron Structures under Blue Laser Irradiation

    No full text
    In this study, laser-assisted chemical bath synthesis (LACBS) was used to prepare pure and Ag-doped ZnO submicron structures using a simplified hydrothermal approach that did not require a catalyst. The photocatalytic degradation of Methylene Blue was investigated under blue laser irradiation (λ = 444.5 nm and I = 8000 lx). The doping concentration varied (2%, 4%, 6%, 8%, tando 10%) and was prepared by LACBS using a continuous blue laser (P = 7 W, λ = 444.5 nm) for the first time. XRD, FE-SEM, EDX, and UV-Vis investigated the characteristics of the samples produced by the LACBS. ZnO: Ag(10%) submicron flowers are essential in rapid photodegradation under blue laser irradiation. The high surface area and catalytic activity of the prepared Ag-decorated ZnO are attributed to this improved photocatalytic activity. Using UV-visible spectroscopy, the photocatalytic efficiency was determined from the absorption spectra. The separation of photo-generated electron-hole pairs was facilitated, and the absorption edge of the hybrid submicron structures shifted into the visible spectrum region due to a combination of the Ag plasmonic effect and surface imperfections in ZnO. Effective visible light absorption was achieved via band-edge tuning, which increased the ZnO:Ag submicron structures’ ability to degrade dyes
    corecore