53 research outputs found

    The global burden of cancer attributable to risk factors, 2010-19 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. Methods The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk-outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. Findings Globally, in 2019, the risk factors included in this analysis accounted for 4.45 million (95% uncertainty interval 4.01-4.94) deaths and 105 million (95.0-116) DALYs for both sexes combined, representing 44.4% (41.3-48.4) of all cancer deaths and 42.0% (39.1-45.6) of all DALYs. There were 2.88 million (2.60-3.18) risk-attributable cancer deaths in males (50.6% [47.8-54.1] of all male cancer deaths) and 1.58 million (1.36-1.84) risk-attributable cancer deaths in females (36.3% [32.5-41.3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20.4% (12.6-28.4) and DALYs by 16.8% (8.8-25.0), with the greatest percentage increase in metabolic risks (34.7% [27.9-42.8] and 33.3% [25.8-42.0]). Interpretation The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.Peer reviewe

    Evaluation of Autosteer in Rough Terrain at Low Ground Speed for Commercial Wild Blueberry Harvesting

    No full text
    Assessment of Global Navigation Satellite Signal (GNSS) autosteering is a critical step in the progression towards full wild blueberry (vaccinium angustifolium) harvester automation. The objective of the study was to analyze John Deere’s universal Auto-Trac 300 autosteer, 4640 display, and Starfire 6000 receiver with both the SF1 and SF3 signal levels for their pass-to-pass accuracy as well as how they compared versus a manual harvester operator. Incorporation of GNSS autosteer in wild blueberry harvesting has never been assessed as the slow harvester travel speeds and small working width caused the implementation to be too challenging. The results of this study concluded that there were no significant differences in pass-to-pass accuracy based on travel speeds of 0.31 m s−1, 0.45 m s−1, and 0.58 m s−1 (p = 0.174). Comparing the signal levels showed significantly greater accuracy of the SF3 system (p < 0.001), which yielded an absolute mean pass-to-pass accuracy 22.7 mm better than SF1. Neither the SF1 nor SF3 signal levels were able to reach the levels of accuracy advertised by the manufacturer. That said, both signal levels performed better than a manual operator (p < 0.001). This result serves to support the idea that in the absence of skilled operators, an autosteer system can provide significant support for new operators. Further, an autosteer system can allow any operator to focus more of their attention on operating the harvester head and properly filling storage bins. This will lead to higher quality berries with less debris and spoilage. The results of this study are encouraging and represent a significant step towards full harvester automation for the wild blueberry crop

    Estimation of Agricultural Dykelands Cultivated in Nova Scotia Using Land Property Boundaries and Crop Inventory

    No full text
    Dykelands are agricultural ground protected from coastal inundation by dyke infra-structure and constitute some of the most agriculturally productive lands in Nova Scotia. Between 2015 and 2019, Canada’s Annual Crop Inventory was used to characterize and estimate hectares of agricultural dykelands cultivated in Nova Scotia. The number of hectares of wheat, barley, corn, forages and soybeans were compiled for each year and compared to the previous year. This was accomplished using GIS software, satellite images, and geodata from the Nova Scotia’s Land Property Database. Results revealed that from 2015 to 2019, an average of 56% of the dykelands’ total surface was dedicated to the production of field crops (wheat, barley, corn, soybeans) and forage. Results also highlighted the importance of forage production on the dykelands. Forage was the largest commodity grown, representing around 80% of the total crop land area of the agricultural dykelands. Corn and soybeans were the second and third crops of abundance, constituting 12 and 4% of the total crop land area, respectively. This study represents the first attempt to document the number of hectares of the principal crops grown on Nova Scotia’s dykelands using crop inventory and property boundaries. Given the predictions of rising sea levels and the overtopping risks that the dykelands face, this study will facilitate more suitable land-use policies by providing stakeholders with an accurate quantitative assessment of the utilization of agricultural dykelands

    Soil Nutrient Availability, Plant Nutrient Uptake, and Wild Blueberry (Vaccinium angustifolium Ait.) Yield in Response to N-Viro Biosolids and Irrigation Applications

    No full text
    We compared the impact of surface broadcasted N-Viro biosolids and inorganic fertilizer (16.5% Ammonium sulphate, 34.5% Diammonium phosphate, 4.5% Potash, and 44.5% s and/or clay filler) applications on soil properties and nutrients, leaf nutrient concentration, and the fruit yield of lowbush blueberry under irrigated and nonirrigated conditions during 2008-2009 at Debert, NS, Canada. Application rates of N-Viro biosolids were more than double of inorganic fertilizer applied at a recommended N rate of 32 kg ha−1. The experimental treatments NI: N-Viro with irrigation, FI: inorganic fertilizer with irrigation, N: N-Viro without irrigation, and F: inorganic fertilizer without irrigation (control) were replicated four times under a randomized complete block design. The NI treatment had the highest OM (6.68%) followed by FI (6.32%), N (6.18%), and F (4.43%) treatments during the year 2008. Similar trends were observed during 2009 with the highest soil OM values (5.50%) for NI treatment. Supplemental irrigation resulted in a 21% increase in the ripe fruit yield. Nonsignificant effect of fertilizer treatments on most of the nutrient concentrations in soil and plant leaves, and on ripe fruits yield reflects that the performance of N-Viro was comparable with that of the inorganic fertilizer used in this study

    Effect of Mechanical Harvesting Technology Type and Harvester Ownership and Services Acquisition Methods on Profitability of Wild Blueberry Production

    No full text
    ABSTRACTThe profitability of wild blueberry (Vaccinium angustifolium) production using two alternative mechanical harvesters was evaluated under three different harvester ownership/service arrangements commonly used by farmers. Production data for the economic analysis were obtained from on-farm trials conducted in Nova Scotia, Canada. Net returns were CAD323 ha−1usingasemi−automaticbinhandlingsystemcomparedwithCAD323 ha−1 using a semi-automatic bin handling system compared with CAD281 ha−1 for a small box handling system with outright harvester purchase. By comparison, net returns were CAD90 ha−1usingthesemi−automaticbinhandlingsystemandCAD90 ha−1 using the semi-automatic bin handling system and CAD63 ha−1 using the small box system using rental harvesting services. The results are more sensitive to changes in yield than price

    Delineation of Management Zones for Site-Specific Information about Soil Fertility Characteristics through Proximal Sensing of Potato Fields

    No full text
    The delineation of management zones (MZs) has been suggested as a solution to mitigate adverse impacts of soil variability on potato tuber yield. This study quantified the spatial patterns of variability in soil and crop properties to delineate MZs for site-specific soil fertility characterization of potato fields through proximal sensing of fields. Grid sampling strategy was adopted to collect soil and crop data from two potato fields in Prince Edward Island (PEI). DUALEM-2 sensor, Time Domain Reflectometry (TDR-300), GreenSeeker were used to collect soil ground conductivity parameter horizontal coplanar geometry (HCP), soil moisture content (θ), and normalized difference vegetative index (NDVI), respectively. Soil organic matter (SOM), soil pH, phosphorous (P), potash (K), iron (Fe), lime index (LI), and cation exchange capacity (CEC) were determined from soil samples collected from each grid. Stepwise regression shortlisted the major properties of soil and crop that explained 71 to 86% of within-field variability. The cluster analysis grouped the soil and crop data into three zones, termed as excellent, medium, and poor at a 40% similarity level. The coefficient of variation and the interpolated maps characterized least to moderate variability of soil fertility parameters, except for HCP and K that were highly variable. The results of multiple means comparison indicated that the tuber yield and HCP were significantly different in all MZs. The significant relationship between HCP and yield suggested that the ground conductivity data could be used to develop MZs for site-specific fertilization in potato fields similar to those used in this study

    Limiting the Collection of Ground Truth Data for Land Use and Land Cover Maps with Machine Learning Algorithms

    No full text
    Land use and land cover (LULC) classification maps help understand the state and trends of agricultural production and provide insights for applications in environmental monitoring. One of the major downfalls of the LULC technique is inherently linked to its need for ground truth data to cross-validate maps. This paper aimed at evaluating the efficiency of machine learning (ML) in limiting the use of ground truth data for LULC maps. This was accomplished by (1) extracting reliable LULC information from Sentinel-2 and Landsat-8 s images, (2) generating remote sensing indices used to train ML algorithms, and (3) comparing the results with ground truth data. The remote sensing indices that were tested include the difference vegetation index (DVI), the normalized difference vegetation index (NDVI), the normalized built-up index (NDBI), the urban index (UI), and the normalized bare land index (NBLI). Extracted vegetation indices were evaluated on three ML algorithms, namely, random forest (RF), k-nearest neighbour (K-NN), and k dimensional-tree (KD-Tree). The accuracy of these algorithms was assessed with standard statistical measures and ground truth data randomly collected in Prince Edward Island, Canada. Results showed that high kappa coefficient values were achieved by K-NN (82% and 74%), KD-Tree (80% and 78%), and RF (83% and 73%) for Sentinel-2A and Landsat-8 imagery, respectively. RF was a better classifier than K-NN and KD-Tree and had the highest overall accuracy with Sentinel-2A satellite images (92%). This approach provides the basis for limiting the collection of ground truth data and thus reduces the labour cost, time, and resources needed to collect ground truth data for LULC maps

    Hair Fescue and Sheep Sorrel Identification Using Deep Learning in Wild Blueberry Production

    No full text
    Deep learning convolutional neural networks (CNNs) are an emerging technology that provide an opportunity to increase agricultural efficiency through remote sensing and automatic inferencing of field conditions. This paper examined the novel use of CNNs to identify two weeds, hair fescue and sheep sorrel, in images of wild blueberry fields. Commercial herbicide sprayers provide a uniform application of agrochemicals to manage patches of these weeds. Three object-detection and three image-classification CNNs were trained to identify hair fescue and sheep sorrel using images from 58 wild blueberry fields. The CNNs were trained using 1280x720 images and were tested at four different internal resolutions. The CNNs were retrained with progressively smaller training datasets ranging from 3780 to 472 images to determine the effect of dataset size on accuracy. YOLOv3-Tiny was the best object-detection CNN, detecting at least one target weed per image with F1-scores of 0.97 for hair fescue and 0.90 for sheep sorrel at 1280 × 736 resolution. Darknet Reference was the most accurate image-classification CNN, classifying images containing hair fescue and sheep sorrel with F1-scores of 0.96 and 0.95, respectively at 1280 × 736. MobileNetV2 achieved comparable results at the lowest resolution, 864 × 480, with F1-scores of 0.95 for both weeds. Training dataset size had minimal effect on accuracy for all CNNs except Darknet Reference. This technology can be used in a smart sprayer to control target specific spray applications, reducing herbicide use. Future work will involve testing the CNNs for use on a smart sprayer and the development of an application to provide growers with field-specific information. Using CNNs to improve agricultural efficiency will create major cost-savings for wild blueberry producers

    Hair Fescue and Sheep Sorrel Identification Using Deep Learning in Wild Blueberry Production

    No full text
    Deep learning convolutional neural networks (CNNs) are an emerging technology that provide an opportunity to increase agricultural efficiency through remote sensing and automatic inferencing of field conditions. This paper examined the novel use of CNNs to identify two weeds, hair fescue and sheep sorrel, in images of wild blueberry fields. Commercial herbicide sprayers provide a uniform application of agrochemicals to manage patches of these weeds. Three object-detection and three image-classification CNNs were trained to identify hair fescue and sheep sorrel using images from 58 wild blueberry fields. The CNNs were trained using 1280x720 images and were tested at four different internal resolutions. The CNNs were retrained with progressively smaller training datasets ranging from 3780 to 472 images to determine the effect of dataset size on accuracy. YOLOv3-Tiny was the best object-detection CNN, detecting at least one target weed per image with F1-scores of 0.97 for hair fescue and 0.90 for sheep sorrel at 1280 × 736 resolution. Darknet Reference was the most accurate image-classification CNN, classifying images containing hair fescue and sheep sorrel with F1-scores of 0.96 and 0.95, respectively at 1280 × 736. MobileNetV2 achieved comparable results at the lowest resolution, 864 × 480, with F1-scores of 0.95 for both weeds. Training dataset size had minimal effect on accuracy for all CNNs except Darknet Reference. This technology can be used in a smart sprayer to control target specific spray applications, reducing herbicide use. Future work will involve testing the CNNs for use on a smart sprayer and the development of an application to provide growers with field-specific information. Using CNNs to improve agricultural efficiency will create major cost-savings for wild blueberry producers

    Deep learning supported machine vision system to precisely automate the wild blueberry harvester header

    No full text
    Abstract An operator of a wild blueberry harvester faces the fatigue of manually adjusting the height of the harvester’s head, considering spatial variations in plant height, fruit zone, and field topography affecting fruit yield. For stress-free harvesting of wild blueberries, a deep learning-supported machine vision control system has been developed to detect the fruit height and precisely auto-adjust the header picking teeth rake position. The OpenCV AI Kit (OAK-D) was used with YOLOv4-tiny deep learning model with code developed in Python to solve the challenge of matching fruit heights with the harvester’s head position. The system accuracy was statistically evaluated with R2 (coefficient of determination) and σ (standard deviation) measured on the difference in distances between the berries picking teeth and average fruit heights, which were 72, 43% and 2.1, 2.3 cm for the auto and manual head adjustment systems, respectively. This innovative system performed well in weed-free areas but requires further work to operate in weedy sections of the fields. Benefits of using this system include automated control of the harvester’s head to match the header picking rake height to the level of the fruit height while reducing the operator’s stress by creating safer working environments
    • …
    corecore