763 research outputs found

    Compressibility behaviour of as-synthesized high-silica Ferrierite.

    Get PDF
    Ferrierite (FER framework topology) is a well-known aluminosilicate zeolite mineral. An understanding of the structure and properties of FER remains important because of its role as a catalyst in commercial reactions. For example, it is important in the petrochemical industry, where it has been used as a shape selective catalyst for the production of isobutene. The thermal behavior of this phase (in its high silica form) was recently studied by Bull et al [1], while its compressibilty has never been investigated before. The high pressure (HP) behavior of synthetic high silica zeolite ferrierite (FER) was investigated by means of in-situ synchrotron X-ray powder diffraction, with the aim to understand the P-induced deformation mechanism. The microporous material was synthesized starting from pure silica and pyridine and propyl-amine as structure directing agents. Here we report the preliminary results on the compressibility of the as-synthesized phase. The study of the compressibility of the calcinated one will be carried out in the following steps of the project. The crystal structure of ferrierite is built up of rings of fivecorner-shared SiO4 tetrahedra (known as five-membered ringsor 5MRs) building units, which form layers in the ab plane. The layers are connected to form a matrix of 10MR channels running parallel to the c axis, which are intersected by 8MR channels running parallel to the b axis. Six-membered rings connect the 10MRs alongthe c axis direction. The HP diffraction experiments were performed at BM01a beamline (ESRF), at the fixed wavelength of 0.71 Å, using a modified Merril-Basset DAC and a mixture of methanol:ethanol:water (16:3:1) as P-transmitting medium. The powder patterns were collected from Pamb to 6.2 GPa. Some patterns were also measured upon pressure release up to Pamb, to check the reversibility of the compression effects. The unit cell parameters were refined by means of Rietveld method. The main results of this study are: 1) No complete X-ray amorphization is observed up to about 6.6 GPa; 2) No abrupt change of the elastic behavior is observed in the whole pressure range. Between Pamb and 6.2 GPa the reduction of the cell parameter are 4%, 5% and 6% for a, b and c respectively, accounting for a volume reduction of about 14 %. 3) The P-induced effects on the as-synthesized Si-ferrierite cell parameters are completely reversible. 4) The bulk modulus obtained using a second order Birch-Murnaghan equation of state and data weighted by the uncertainties in P and V was K0 = 30.1(3) GPa. This compressibility is one of the highest when compared with the other natural and synthetic zeolites studied with “penetrating” aqueous media [2, 3] and is very similar to that of SAPO-34 [4], another microporous material studied at HP in its as-synthesized form containing the organic template

    High-pressure behavior of high silica ferrierite

    Get PDF
    Ferrierite (FER framework topology) is a well-known aluminosilicate zeolite mineral. An understanding of the structure and properties of FER remains important because of its role as a catalyst in commercial reactions. For example, it is important in the petrochemical industry, where it has been used as a shape selective catalyst for the production of isobutene. The thermal behavior of this phase (in its high silica form) was recently studied by Bull et al [1], while its compressibilty has never been investigated before. The high pressure (HP) behavior of synthetic high silica zeolite ferrierite (FER) was investigated by means of in-situ synchrotron X-ray powder diffraction, with the aim to understand the P-induced deformation mechanism. The microporous material was sinthesized starting from pure silica and pyridine and propyl-amine as structure directing agents. Here we report the preliminary results on the compressibility of the as synthesized phase. The study of the compressibility of the calcined one will be carried out in the following steps of the project.The crystal structure of ferrierite is built up of rings of fivecornershared SiO4 tetrahedra (known as five-membered ringsor 5MRs) building units, which form layers in the ab plane.The layers are connected to form a matrix of 10MR channels running parallel to the c axis, which are intersected by 8MR channels running parallel to the b axis. Six-membered rings connect the 10MRs alongthe c axis direction. The HP diffraction experiments were performed at BM01a beamline (ESRF), at the fixed wavelength of 0.71 Å, using a modified Merril- Basset DAC and a mixture of methanol- ethanol and water (16:3:1) as penetrating P-transmitting medium. The powder patterns were collected from Pamb to 6.2 GPa. Some patterns were also measured upon pressure release up to Pamb, to check the reversibility of the compression effects. The unit cell parameters were refined by means of Rietveld method. The main results of this study are: 1) No complete X-ray amorphization is observed up to about 6.6 GPa; 2) No abrupt change of the elastic behavior is observed in the whole pressure range. Between Pamb and 6.2 GPa the reduction of the cell parameter are 4%, 5% and 6% for a, b and c respectively, accounting for a volume reduction of about 14 %. 3) The bulk modulus obtained using a second order Birch-Murnaghan equation of state and data weighted by the uncertainties in P and V was K0 = 30.1(3) GPa. This compressibility determined in m.e.w. is one of the highest when compared with other natural and synthetic zeolites studied with “penetrating” aqueous media [2], [3]. 4) The P-induced effects on as-syntehsized ferrierite structure are completely reversible

    on the use of arima models for short term water tank levels forecasting

    Get PDF
    Abstract In this paper a statistical study on the time series of water levels measured, during 2014, in the water tank of Cesine, Avellino (Italy), is presented. In particular, the autoregressive integrated moving average (ARIMA) forecasting methodology is applied to model and forecast the daily water levels. This technique combines the autoregression and the moving average approaches, with the possibility to differentiate the data, to make the series stationary. In order to better describe the trend, over time, of the water levels in the reservoir, three ARIMA models are calibrated, validated and compared: ARIMA (2,0,2), ARIMA (3,1,3), ARIMA (6,1,6). After a preliminary statistical characterization of the series, the models' parameters are calibrated on the data related to the first 11 months of 2014, in order to keep the last month of data for validating the results. For each model, a graphical comparison with the observed data is presented, together with the calculation of the summary statistics of the residuals and of some error metrics. The results are discussed and some further possible applications are highlighted in the conclusions

    Thermal behaviour of siliceous faujasite: further structural interpretation of negative thermal expansion

    Get PDF
    The high-temperature behaviour of siliceous faujasite (Si-Y) was investigated by in situ synchrotron Xray powder diffraction from room temperature up to 1123 K. This porous phase is remarkably stable when heated, and no phase transitions or changes in symmetry are observed. A marked negative thermal expansion (NTE), already reported in literature for a heating range from 25 to 573 K, was confirmed up to about 923 K. Above this temperature a positive thermal expansion was observed. Si-Y’s thermal behaviour was interpreted on the basis of the transverse thermal vibrations of the oxygen atoms involved in the T–O–T linkages and a series of other structural features characterizing the faujasite structure, namely the T–T distances between adjacent tetrahedral sites, the thickness of the double 6-membered rings, and the ditrigonal index of the 6-membered rings. Moreover, the thermal behaviour of several other anhydrous porous materials with NTE behaviour is discussed and compared to that of Si-Y

    Fluorenone dye-Zeolite L hybrid: a novel optical material

    Get PDF
    A major challenge facing humanity is developing renewable source of energy. Following the biological blueprint of the natural photosynthesis is possible design synthetic systems for converting light into stored energy: the so called artificial antenna systems. The encapsulation of ordered chromophore molecules into one dimensional zeolite channel systems results in host-guest compounds suitable for the development of novel optical materials such as lenses, infrared light-emitting diodes (used in telecommunications) or dye nanostructured materials for optical data storage [1]. X-ray powder diffraction study of zeolite K-L loaded with 0.5, 1, 1.5, 2 fluorenone-dye (FL) molecules per unit cell (ZL/FL hybrid) [2], was carried out to understand the functionality of these host-guest systems from the structural point of view. These data evidenced a significant change of the unit cell parameters due to the embedding of FL into the ZL 12-membered channels. The Rietveld refinements revealed that the maximum loading is 1.5 FL molecules per unit cell. A strong interaction between FL carbonyl group and two extraframework potassium cations is proved by the short bond distances which make this composite very stable

    A new framework topology in the dehydrated form of zeolite levyne.

    Get PDF
    0003-004X/13/1112\u20132063$05.00/DOI: http://dx.doi.org/10.2138/am.2013.4583 2063 A new framework topology in the dehydrated form of zeolite levyne Rossella Arletti1, Giovanna Vezzalini2, Simona Quartieri3, Fernando C\ue1mara1 and Matteo Alvaro4,* 1Dipartimento di Scienze della Terra, Universit\ue0 di Torino, via Valperga Caluso n. 35, 10125 Torino, Italy 2Dipartimento di Scienze Chimiche e Geologiche, Universit\ue0 di Modena e Reggio Emilia, via Giuseppe Campi, 183, 41125 Modena, Italy 3Dipartimento di Fisica e Scienze della Terra, Universit\ue0 di Messina, Viale F. Stagno D\u2019Alcontres, 31, 98122 Messina, Italy 4Dipartimento di Scienze della Terra e dell\u2019Ambiente, Universit\ue0 degli Studi di Pavia, Italy; and International Research School of Planetary Sciences, Universit\ue0 G. d\u2019Annunzio, Chieti, Italy A bstract The thermoelastic behavior and structural evolution of a natural levyne-Ca [(Ca7.8 Na2.2K1.1)\u3a311.1 Al20.0Si34.2O108 c551.5H2O; R3m; a = 13.377(4) \uc5, c = 22.870(1) \uc5, V = 3544.1(3) \uc53] were studied by both T-resolved synchrotron X\u2011ray powder diffraction (SR-XRPD) between room temperature and 800 \ub0C, and by conventional-source high-temperature single-crystal X\u2011ray diffraction (SC-XRD). Above 230 \ub0C, water loss and reallocation of extraframework cations induce the straining and consequent breaking of T-O-T bridges in the D6R, with resulting migration of tetrahedral cations to new tetrahedral sites. The new tetrahedra share an edge with the previously occupied tetrahedra. This phenomenon gives rise to a new topology, which coexists to about 40%, with the original one. The new framework consists of a sequence of a novel zeolitic cage (described as a 20-hedron formed by fourteen 6mR and six 4mR) and two consecutive cancrinite cages along [0001]. This topology, which is reported in the database of the hypothetical zeolite structures as 166_2_293, belongs to the ABC-6 family and can be described by the following sequence of 6-rings: ABCBCACAB, to be compared with that of levyne AABCCABBC. In the new topology the extraframework cations are distributed over 3 new sites: one at the center of the 6mR a5 [0001] shared by the two cancrinite cages, one near the center of the 6mR a5 [0001] at the base of the new cage, and a last one in a 6mR window of the new cage. The 8mR bidimensional channel system originally present in levyne is therefore absent in the new topology and hence molecular diffusion is likely to be partially hindered in the dehydrated form. The phase transition is not completely reversible, at least in the short term, as only partial rehydration was demonstrated
    • …
    corecore