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On the use of ARIMA models for short-term water tank

levels forecasting

G. Viccione, C. Guarnaccia, S. Mancini and J. Quartieri
ABSTRACT
In this paper a statistical study on the time series of water levels measured, during the 2014, in the

water tank of Cesine, Avellino (Italy) is presented. In particular, the ARIMA forecasting methodology is

applied to model and forecast the daily water levels. This technique combines the autoregression

and the moving average approaches, with the possibility to differentiate the data, to make the series

stationary. In order to better describe the trend, over the time, of the water levels in the reservoir,

three ARIMA models are calibrated, validated and compared: ARIMA (2,0,2), ARIMA (3,1,3), ARIMA

(6,1,6). After a preliminary statistical characterization of the series, the models’ parameters are

calibrated on the data related to the first 11 months of 2014, in order to keep last month of data for

validating the results. For each model, a graphical comparison with the observed data is presented,

together with the calculation of the summary statistics of the residuals and of some error metrics.

The results are discussed and some further possible applications are highlighted in the conclusions.
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INTRODUCTION
Urban water forecasting allows making predictions of water

needs, allowing water distribution system (WDS) operators

to handle production, pumps energy and valve regulation.

Demand estimation provides a useful predictive tool to

water utilities for monitoring and controlling WDSs.

Water demand, in the specific context of public water

supply, is the total amount of water, including water losses

to a certain extent, needed to supply customers, i.e. private

households, public buildings, irrigation of public gardens,

sewers cleaning, etc., within a time interval. A water

demand estimation must ensure nodal demands while satis-

fying water quality and pressure levels across the network. A

number of factors influence water demand, including
population growth (residential, fluctuating), economic

income, industry (size, technology involved, production

types), local climate influencing seasonal demand patterns,

price changes. Water demand is strongly related to water

tank level, according to the well-known continuity equation.

Let Vi(t) be the Volume of water inside the tank at the time t,

h(t) be the water level inside the tank and Qi the generic

flow rate (for instance positive if it enters the tank, negative

otherwise). The continuity equation coupled with the tank

law read respectively:

dVi(t)
dt

¼
Xm

i¼1

Qi(t) (1)
dVi(t)
dt

¼ At
dhi

dt
(t) (2)
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where At is the net surface of the tank of constant horizontal

section. From the combination of Equations (1) and (2), it

follows that there is a straight relation between flowrates

and the water level.

In water applications, forecasting, even if complex, is

beneficial for many reasons. First of all, investments in

water supply systems can be extremely expensive, involving

millions to hundreds of millions Euros, thus implying the

need of forecasting a scenario which is naturally evolving

because of the aging of pipelines, water tank degradation

(Viccione et al. a), water leakages, sizing, etc. Minimiz-

ing investment costs is therefore essential either in a short or

long term interval when planning new developments or

system expansion. Predictions are also relevant in processes

for reviewing prices (Herrera et al. ). Secondly, as water

is a precious resource to preserve for environmental and

financial reasons, it is of interest knowing in advance what

the water demand is expected to be in the short term, allow-

ing a sustainable exploitation. In addition, short term

forecasting of water use helps optimizing day-to-day utility

operations and planning maintenance schedules (Shabani

et al. ).

Several forecasting methods can be adopted in water

applications, e.g. – per capita (or per customer) model, –

end-use models which rely on customer behaviour, –

regression models, e.g. Maidment et al. (), Zhou et al.

(), Bakker et al. () and Shabani et al. () which

are appropriate in the case of time varying water prices, per-

sonal income, population growth, - time-series/extrapolation

models including averaging, trend analysis, exponential

smoothing and autoregressive integrated moving average

(ARIMA), in which the prediction is based onto projecting

past trends.

The latter forecasting technique is based on the ‘Time

Series Analysis’ (TSA) approach. These models range from

straight averages of time series to relatively high elaborated

statistical models. The ones based on ‘AutoRegressive Inte-

grated Moving Average’ techniques, both Seasonal

(SARIMA) or not (ARIMA), are powerful models able to

predict the slope of data evolving on time (Box & Pierce

; Chatfield ; Box & Pierce 1976). These techniques

have been developed mainly in Statistics, and then applied

in Economics, Management, Physics, and other, e.g.

(Milanato ; Manganelli & Tajani ). Some of the
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authors applied the TSA deterministic decomposition and

the ARIMA models to acoustical noise in urban areas

(Guarnaccia et al. a, b, ) and in proximity of

an airport, also in combination with non-homogeneous Pois-

son distribution (Guarnaccia et al. ). Other applications

by some of the authors to electric consumption by public

transportation in Sofia, Bulgaria, and to air pollution in

Nuevo Leon, Monterrey, Mexico can be found respectively

in Tepedino et al. () and in Guarnaccia et al. (c).

Concerning water demand, water tank levels, inflows

and outflows, extrapolation models usually rely on historical

data on water use to forecast future trends. Statistical

methods such as Multiple Linear Regression (MLR) and

ARIMA models are commonly used for short-term urban

water demand forecasting. Among the pioneers, Maidment

& Miaou () used ARIMA in the daily demand model

based on a study of nine American cities. Soon later,

Smith () developed a time series model to forecast

daily municipal water use in Washington, USA. Wong

et al. () applied seasonal autoregressive moving series

models to analyse the structure of daily urban water con-

sumption in Hong Kong as a function of rainfall. Two

autoregressive integrated moving average models, one non-

seasonal (daily, ARIMA model) and one seasonal (monthly,

SARIMAmodel), to predict daily and monthly inflows to the

Elephant Butte Reservoir, NewMexico, are adopted and dis-

cussed in Zamani Sabzi et al. (). A parallel adaptive

weighting strategy of water consumption forecast for the

next 24–48 h, using univariate time series of potable water

consumption, is proposed in Sardinha-Lourenço et al.

(). Long term forecasting of water consumption in the

Hohoe municipality, Ghana, is proposed by Amponsah

et al. (), using ARIMA as well. Suhartono and co-

workers (Suhartono et al. ) proposed a hybrid class of

methods based on Singular Spectrum Analysis (SSA)

decomposition, Time Series Regression (TSR), and

ARIMA, known as hybrid SSA-TSR-ARIMA, for water

demand forecasting. A comparison among multiple linear

(MLR) and nonlinear regression, autoregressive integrated

moving average (ARIMA), artificial neural network (ANN)

and hybrid wavelet transforms and artificial neural network

methods (WA-ANN) for urban water demand prediction in

Montreal, Canada, was made by Adamowski et al. ().

Other techniques comparisons were made by Mohammadi
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et al. (), de Lima et al. (), between ARIMA and

ANN, and by Antunes et al. () between Machine learn-

ing and ARIMA. The latter paper concludes that it is

difficult to affirm that one of the two techniques is always

better than the other, since in some cases ARIMA performs

better than the machine learning and viceversa. The main

conclusion is that in order to determine which strategy

performs better, it should be taken into account the

peculiarities of the data of the case under study. Moreover,

one of the most interesting features of ARIMA techniques

is that they require as input only the measured data of

the parameter that it is going to be forecasted. This is a

strong simplification with respect to machine learning

approaches, that usually require several parameters in

input.

This large literature about water demand and related

parameters forecasting shows the large interest of the scien-

tific community. Anyway, the reservoir or tank water level

prediction is very important in reservoir management, in

order to support the decision system. For instance, Ashaary

et al. (), Rani & Parekh () and Valizadeh & El-Shafie

() underline the importance of predicting water reservoir

levels, implementing interesting models based on ANN

models. Nwobi-Okoye & Igboanugo () perform daily

water level predictions in a reservoir, comparing ANN and

ARIMA techniques, concluding that the accuracy of the

ANN model increase with increasing inputs, while

ARIMA model yields the best prediction in the considered

dataset.

In this paper, ARIMA models are introduced as predic-

tive tool for short term daily average water tank level

forecasting in a rural area. This study is motivated by the

fact that, in Italy, especially in rural towns, a single water

tank can be used to serve the small area. For larger towns,

the methodology used in this paper can be easily extended

to any number of interconnected tanks, opening the way

to studies about the relations and the influence between

the models applied in each tank. Very often the tanks are

equipped with water level meters and more rarely with

flow rate meters (Viccione et al. b). Thus, the potential

interest of water managers can be to take a decision on

the basis of the post processing of recorded water levels in

tanks. By predicting short term water levels, it is possible

to prevent overflow discharges in water tanks and to
s://iwaponline.com/ws/article-pdf/doi/10.2166/ws.2019.190/638608/ws2019190.pdf
optimize management plans for the water distribution, e.g.

during drought events.
METHODOLOGY

The Box-Jenkins/ARIMA forecasting model is here adopted.

It is amongst the most popular procedures for time series

analysis and forecasting application. The order of an

ARIMA model is usually denoted by the notation

ARIMA(p,d,q), where p is the order of the autoregressive

part, d is the order of the differencing and q is the order of

the moving-average process. The general source formula is:

ϕp(B)(1� B)d Yt ¼ θq(B) et (3)

in which Yt is the value of the series observed at the time t, B

is the delay operator, Φ are the autoregressive polynomials, θ

are the moving average polynomials and et is the difference

between the observed value Yt and the forecast Ŷt at the

time t.

Error metrics

To have a numerical comparison on the effectiveness of the

proposed models, some error metrics can be adopted. In this

paper, the authors use the Mean Percentage Error (MPE),

the Coefficient of Variation of the Error (CVE) and the

Mean Absolute Scaled Error (MASE), defined as follow:

The MPE measures the error distortion, i.e. it is able to

describe if the model overestimates or underestimates the

actual data:

MPE ¼
Pn

t¼1 ((Yt � Ŷ t)=(Yt))100
n

(4)

The variation from the actual data in absolute value is

given by the CVE, that provides the error dispersion:

CVE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(
Pn

t¼1 (et)
2)=(n� 1

q
)

�Y
(5)

where �Y is the mean value of the actual data in the con-

sidered time range. The MASE for seasonal time series is
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computed according to the following formula (Franses

):

MASE ¼ 1
n

Xn
t¼1

jetj
(1)=n� k

Pn
i¼kþ1 jYi � Yi�kj

(6)
In this case, according to the features of the dataset that

will be presented in the following sections, a simple naïve

model based on the assumption that the data of today is the

same as yesterday (Ŷt ¼ Yt�1) is applied, choosing a lag

k¼ 1 in the above formula (Hyndman & Athanasopoulos

).
DATASET ANALYSIS

This statistical study was applied on the time series of the

levels observed in one of the reservoirs of the water supply

system of the town of Avellino, Italy, located in the area of

Cesine. Data refer to daily average water levels, expressed

in meters, measured in 2014, from January to December.

The original dataset was divided into two subsets: the first

333 values were used to perform the calibration and, there-

fore, the estimation of the model parameters (calibration

dataset), the remaining ones were used for the validation

phase (validation dataset).

The calibration dataset runs from 2 January 2014 to 30

November 2014. It shows some missing value, due to the

occurrence of holidays and other, not identified, events.

So, in the first 333 days of the year only 280 measurements

were acquired. The last month of 2014, from the 1st to the

31st of December, was used for validation of the model.

This subset is made of 31 data: 26 measured and 5 imputed

by calculating the average of the two closest available

measurements as already explained above.

The summary statistics of the 280 calibration data

(Table 1) show a low value of the standard deviation, if com-

pared to the average of the levels. Thus, the series seems
Table 1 | Summary statistics of the measured data (not imputed) of the calibration dataset re

Sample Size Mean [m] Std. Dev. [m] Median [m]

280 2.73 0.64 2.7
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fairly regular over time, without frequent changes and

great entity. Furthermore, since the values of asymmetry

and kurtosis are very close to zero, the data can be con-

sidered normally distributed, as extracted from a normal,

or Gaussian, population.

Then, the calibration dataset was reconstructed by

imputing the missing values with the average of the immedi-

ately preceding and the immediately following one.

Generally, for not-seasonal time series such the one under

study, the imputation technique offers good results since

the linear interpolation between two contiguous values

takes into account the temporal location of the omitted

value with respect to the contiguous ones.

The result of this elaboration is a calibration dataset that

consists of 280 observed and 53 reconstructed values. In

Figure 1(a) and 1(b) the complete reconstructed time

series has been presented, together with the ‘duration plot’

of the data (sorted from the highest to the lowest).

The autocorrelation plot of the reconstructed series,

Figure 1(c), shows that the function decreases as the lag

increases. So, a periodicity in the data cannot be identified.

In these cases, the forecasting through seasonal determinis-

tic model does not seem plausible but the scenario suggests

to use a stochastic technique as the ARIMA model.

In order to complete the characterization of the time

series, some common statistical tests have been carried

out. In particular, the Ljung-Box (LB) and Box-Pierce (BP)

tests were used to verify a possible autocorrelation, while

Lee-White-Granger and Terasvirta-Lin Granger tests were

used to check linearity. Results (Table 2) show that the auto-

correlation can be considered statistically significant in this

case and that a linear process is present. Thus, it seems

reasonable to use linear models like those of the ARIMA

class.

Finally, the Augmented Dickey-Fuller (ADF) and Phil-

lips-Perron (PP) tests (Table 3), performed to verify the

stationarity, show the tendency to reject the null hypoth-

esis, i.e. the presence of unit roots and the non-

stationarity of the process. Thus, the analysed series
ferred to the water levels observed in the reservoir of Cesine

Min [m] Max [m] Skewness Kurtosis

1.4 4 �0.16 �0.89



Figure 1 | Water levels of the reservoir during the 2014, (a) observed, versus time (b)

observed and reconstructed, sorted from the highest to the lowest level (c)

Autocorrelation plot of the reconstructed series, i.e. autocorrelation function

plotted as a function of the lag.

Table 2 | Results of Ljung-Box and Box-Pierce autocorrelation tests, and of Lee-White-

Granger and Terasvirta-Lin Granger linearity tests, performed on the calibration

dataset

Test χ2 d p-value

Ljung-Box 1366.32 20 <2.2e-16

Box-Pierce 1389.20 30 <2.2e-16

Lee-White-Granger 1.9282 2 0.3813

Terasvirta-Lin-Granger 2.2767 2 0.3203

Table 3 | Augmented Dickey-Fuller and Phillips-Perron Unit Root tests for stationarity of

the time series performed on the 333 data of the water levels

Test Statistic of the test Lag p-value

Augmented Dickey-Fuller �6.4257 6 0.01

Phillips-Perron �4.4054 5 0.01
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presents a stationary trend: the mean, variance and auto-

correlation does not significantly change during the

overall observation time.
CALIBRATION OF THE MODEL

In order to better describe the trend, over the time, of the

water levels in the reservoir, three ARIMA models were per-

formed. Coefficients were estimated on the first 333

calibration periods by means of the statistical program ‘R’

and using the likelihood maximization as technique of

parameter estimation.

Model ARIMA (2,0,2)

Because of the stationarity of the data, ARIMAmodel (2,0,2)

does not include a differentiation process. The prediction of

the water level in the tank in a given period t, provided by

the model, is described by Equation (7).

Ŷt ¼ μþφ1(Yt�1�μ)þφ2(Yt�2�μ)þϑ1(et�1)þϑ2(et�2) (7)

Table 4, instead, reports the estimated value of the coef-

ficients of the model and their relative standard errors. The

value of the intercept (about 2.7 m) can be considered the

average value of the water level in the tank during the cali-

bration period.

The graphical comparison between the observed data

and the ARIMA model (2,0,2) (Figure 2(a)) shows how

the curve of the predicted data (red curve) follows very clo-

sely the one of the observed ones (black curve). The time

horizon of the forecast is one day. Only the fastest fluctu-

ations of the level are not well foreseen since the model

needs, at least, one period of time (in this case one day)

to settle down after a sharp change in the slope of the

observed signal.



Table 4 | Estimated coefficients of the ARIMA (2,0,2) model and related standard errors

Intercept, μ [m] AR1, φ1 AR2, φ2 MA1, ϑ1 MA2, ϑ2

Estimated Value 2.7314 1.8491 �0.8926 �0.4743 �0.1794

Standard Error 0.0634 0.0389 0.0354 0.0697 0.0659
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Model ARIMA (3,1,3)

Model ARIMA (3,1,3) contemplates an order one of differ-

entiation of the data. Moreover, both an autoregressive

and a moving average term were added. The level in the

reservoir, predicted by the model at a generic period t, is

described by Equation (8).

Ŷt ¼ Yt�1 þ φ1(Yt�1 � Yt�2)þ φ2(Yt�2 � Yt�3)

þ φ3(Yt�3 � Yt�4)þ ϑ1(et�1)þ ϑ2(et�2)þ ϑ3(et�3) (8)

This model, as the previous one, has a forecasting time

horizon of one day.

Table 5 shows the estimated value of the coefficients of

the model and their relative standard errors.

Model ARIMA (6,1,6)

In order to provide a three-day forecasting horizon a model

ARIMA (6,1,6) was developed. In the phase of estimation of

parameters, the values of the first three autoregressive par-

ameters (φ1, φ2, φ3) and the first three moving average

parameters (ϑ1, ϑ2, ϑ3) were manually set to zero, perform-

ing the likelihood maximization with the new function.

A differentiation of order one of the series was also

carried out. The model forecasting formula is reported in

Equation (9).

Ŷt ¼ Yt�4 þ φ4(Yt�4 � Yt�5)þ φ5(Yt�5 � Yt�6)

þ φ6(Yt�6 � Yt�7)þ ϑ4(et�4)þ ϑ5(et�5)þ ϑ6(et�6) (9)

Table 6 shows the model coefficients with the relative

standard errors.

The graphical comparison, Figure 2, shows how the

curve of ARIMA model (6,1,6) (green line) follows quite pre-

cisely the one related to the observed data (black line) but

the extension of the forecasting horizon from one to three
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day is paid with a loss of precision. Furthermore, it is poss-

ible to observe the typical delay of the expected signal

with respect to the observed one. As could be expected

this model needs three periods to settle any rapid variations

in the series.
VALIDATION OF THE MODEL

In order to verify the forecasting abilities of the three pro-

posed models, a validation phase was carried out by using,

as already explained, the values of the daily water level regis-

tered in the tank of Cesine in the month of December 2014.

The summary statistics of the forecast error are reported

in Table 7.

Figure 3(a) shows the comparison between the level

value observed in December (continuous black line with cir-

cles) and the level predicted by the ARIMA model (2,0,2)

(dashed red line with squares). In the first days, the

model’s delay in anticipating the sharp change in slope in

the observed series is manifested. Starting from the period

337 the forecast manages to follow very well the trend of

the data which present very progressive and not rapid vari-

ations in value.

Model (3,1,3), instead, averagely overestimates the data

observed throughout the validation period, as can be

noticed in Figure 3(b).

Figure 3(c) shows the comparison between the observed

water level and the forecast level provided by the ARIMA

model (6,1,6). The forecast shows the typical delay, since

the information extracted to predict the series is that of

the three previous days.
RESULTS AND DISCUSSION

In order to quantitatively compare the proposed models, the

analysis of the forecast errors in the calibration phase



Figure 2 | Observed and forecasted water levels of the reservoir of Cesine in the calibration time range. The black line is the observed series, the coloured lines are the forecasts of the

following models: (a) ARIMA (2,0,2), red line; (b) ARIMA (3,1,3), blue line; (c) ARIMA (6,1,6), green line.
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Table 5 | Estimated values and standard error of the coefficients of the ARIMA (3,1,3) model

AR1, φ1 AR2, φ2 AR3, φ3 MA1, ϑ1 MA2, ϑ2 MA3, ϑ3

Estimated Value 1.2350 0.2090 �0.5201 �0.8703 �0.5839 0.4542

Standard Error 0.2225 0.3822 0.1782 0.2154 0.2689 0.0950

Table 6 | Estimated values and standard error of the coefficients of the ARIMA (6,1,6) model

AR4, φ4 AR5, φ5 AR6, φ6 MA4, ϑ4 MA5, ϑ5 MA6, ϑ6

Estimated Value 0.2594 �0.0225 �0.4463 �0.1590 0.2224 0.3933

Standard Error 0.3138 0.3347 0.1301 0.3416 0.3163 0.1532

Table 7 | Summary statistics of the errors during the validation phase

ARIMA Model Mean [m] Std. Dev. [m] Median [m] Min [m] Max [m] Skewness Kurtosis

(2,0,2) 0.02 0.20 0.04 �0.92 0.44 �2.75 11.89

(3,1,3) �0.10 0.20 �0.09 �1.03 0.27 �2.84 12.04

(6,1,6) 0.11 0.46 0.05 �0.56 1.36 0.65 �0.14
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(residuals) and in the validation phase (errors) has been exe-

cuted. The ARIMA model (2,0,2) has both an average of

residuals and a median equal to zero and the standard devi-

ation is particularly low, too (Table 8). The model (3,1,3)

confirms the tendency to overestimate the real value of the

level showing a negative average and median of the

residuals. The asymmetry and kurtosis indices suggest a

normal distribution of the residues for all the three proposed

models. The ARIMA model (2,0,2) has a minimum and

maximum error minor than the other proposed ones. The

residuals distribution of model (6,1,6) exhibits the highest

standard deviation, even though the mean residual is very

low. This worsening in the performances is balanced by

the advantage to give a broader forecasting horizon.

Residuals of the ARIMA model (2,0,2) appear to be sym-

metrically and regularly distributed (Figure 4(a)). As regards

the other two models there are slight asymmetries in the his-

tograms, which appear of modest magnitude, also when

evaluating the quantile-quantile diagrams of Figure 5.

Figure 5 shows the quantile-quantile diagrams (Q-Q

plot) of the residuals for all the three proposed models.

This graph compares the cumulative distribution of the

observed variable with the cumulative distribution of a

normal distribution. If the observed variable has a normal
om https://iwaponline.com/ws/article-pdf/doi/10.2166/ws.2019.190/638608/ws2019190.pdf
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distribution, the points of this joint distribution gather on a

diagonal directed from the bottom to the top and from left

to right. In the Q-Q plots shown we can see that all three

models provide normally distributed forecast errors, i.e.

they do not differ significantly from this desired distribution.

Thus, in general the proposed ARIMA models guarantee

a forecast error apparently due only to random fluctuations

well described by a normal distribution.

As for the autocorrelation of the residuals (Figures 6),

the models (2,0,2) and (3,1,3) present a very low autocorre-

lation. The model (6,1,6), instead, seems not to have been

able to exploit all the autocorrelation of the series. This

result was predictable due to the fact that the lowest lag

data (1, 2 and 3) could not be used in order to extend the

forecast horizon to the next three days.

In Table 9, the summary statistics of the errors calcu-

lated in the validation phase are reported. As expected, the

error distributions tend to get worse with respect to the cali-

bration phase. Anyway, the mean errors and the standard

deviations still give good results.

Finally, in Table 10 the values of the average percentage

error (MPE), of the error variation coefficient (CVE) and of

the MASE are reported, in both the phases. The model

(2,0,2) presents the lower average error (MPE) and the



Figure 3 | Water levels (observed and forecasted) of the Cesine reservoir during the validation period (December 2014). The black line is the actual series, the red line is the forecast of the

ARIMA (2,0,2) model (a), the blue line is the forecast of the ARIMA (3,1,3) model (b), the green line is the ARIMA (6,1,6) model (c).
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Table 8 | Summary statistics of the residuals (calibration phase)

ARIMA Model Mean [m] Std. Dev. [m] Median [m] Min [m] Max [m] Skewness Kurtosis

(2,0,2) 0.00 0.15 0.00 �0.52 0.52 �0.22 2.18

(3,1,3) �0.12 0.15 �0.12 �0.63 0.38 �0.15 2.03

(6,1,6) �0.01 0.57 0.02 �2.40 1.56 �0.44 1.30

Figure 4 | Histograms of the residuals during the calibration phase. In (a) residuals of the ARIMA (2,0,2); in (b) residuals of the ARIMA (3,1,3); in (c) residuals of the ARIMA (6,1,6).

Figure 5 | Q-Q plots of the residuals during the calibration phase. In (a) residuals of the ARIMA (2,0,2); in (b) residuals of the ARIMA (3,1,3); in (c) residuals of the ARIMA (6,1,6).

Figure 6 | Autocorrelation plots of the residuals during the calibration phase. In (a) residuals of the ARIMA (2,0,2); in (b) residuals of the ARIMA (3,1,3); in (c) residuals of the ARIMA (6,1,6).

Table 9 | Summary statistics of the errors (validation phase)

ARIMA Model Mean [m] Std. Dev. [m] Median [m] Min [m] Max [m] Skewness Kurtosis

(2,0,2) 0.02 0.20 0.04 �0.92 0.44 �2.75 11.89

(3,1,3) �0.10 0.20 �0.09 �1.03 0.27 �2.84 12.04

(6,1,6) 0.11 0.46 0.05 �0.56 1.36 0.65 �0.14
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Table 10 | Value of the error metrics computed for the three proposed models during the

two phase of the modelling process

Phase ARIMA Model MPE CVE MASE

Calibration (2,0,2) �0.306 0.055 0.764

Calibration (3,1,3) �4.959 0.070 1.123

Calibration (6,1,6) �1.781 0.209 3.145

Validation (2,0,2) 0.278 0.070 0.858

Validation (3,1,3) �4.035 0.077 1.105

Validation (6,1,6) 4.471 0.161 2.922
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lower error variation coefficient (CVE), both in calibration

and in validation, compared to the other models. This

result confirms that for this time series, it does not seem

useful to carry out the differentiation of order one and there-

fore the preferable model among those proposed to obtain a

forecast with a time horizon of one day is the ARIMA

(2,0,2). The model (6,1,6) shows a worsening of the values

of the error metrics offset, basically due to the extension of

the forecast horizon.
CONCLUSIONS

In this paper the problem of modelling the time series of

water levels in a reservoir connected to the supply system

of a city has been discussed. In particular, a methodology

to model and forecast the daily levels was applied.

The univariate time series is related to the daily

measurements of the water levels, observed during the

year 2014, in the reservoir of the Cesine area connected to

the network for the drinking water use of the city of Avellino

(Italy). Some measurements, in correspondence of public

holidays, were missing and, so, reconstructed imputing the

average value of the two temporally closest measurements,

one previous and one following the missing period. In this

way a complete time series of 364 periods was obtained.

Once statistically characterized the time series, a sto-

chastic modelling of the ARIMA class was proposed. The

statistical analysis showed that the series of levels does not

present evident periodicity or seasonality, which could be

used for the construction of a deterministic or seasonal

model. Furthermore, the series was linear and stationary.

Then, the dataset was divided into two subgroups: 333
s://iwaponline.com/ws/article-pdf/doi/10.2166/ws.2019.190/638608/ws2019190.pdf
calibration periods, for the estimation of the coefficients of

the proposed models, and 31 validation periods, correspond-

ing to the measurements of the levels in December 2014.

The results of the modelling were very encouraging both

by comparing, graphically, the observed level with the

expected one, and by analysing the distribution of the fore-

cast error from a quantitative point of view. The best

forecast results both in the calibration phase, i.e. during

the parameter estimation, and in the validation phase,

were obtained with an ARIMA model (2,0,2). A model

with differentiation of the first-order series, ARIMA (3,1,3),

was also tested, however it did not provide clear improve-

ments in the forecast. Both of these models are

characterized by a one-day forecasting horizon. To obtain

a longer time horizon, an ARIMA model (6,1,6) was

implemented. It provided slightly worse forecasts but with

a three-day forecast horizon. Therefore, a possible and

novel approach could be to implement two models in paral-

lel: the ARIMA (6,1,6) model could be used for ‘medium

term’ (three days ahead) rough predictions, combined with

the ARIMA (2,0,2) model, used to provide short term (one

step ahead, daily) forecast. The use of these techniques on

water data showed excellent potential, presenting a possible

way for the integration between the current water service

monitoring systems and the forecasts obtained with this

methodology. The contribution of this paper is to extend

the studies on the adoption of ARIMA techniques on this

kind of data, dealing with a particular case study and focus-

ing on the methodology to choose the best TSA model for

the data under study. In the authors’ opinion, the proposed

approach could give water managers a tool to operate,

especially in cases where flow rate data are not available.

Further studies will include a similar approach to the

flow rate, in order to explore the potentiality of these tech-

niques to a different dataset. In addition, in other time

series in which the hourly data are available, different time

bases can be considered, so that seasonal patterns could

arise and could be implemented in the models.
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