312 research outputs found

    Repeatability of Corneal Elevation Maps in Keratoconus Patients Using the Tomography Matching Method

    Get PDF
    To assess repeatability of corneal tomography in successive measurements by Pentacam in keratoconus (KC) and normal eyes based on the Iterative Closest Point (ICP) algorithm. The study involved 143 keratoconic and 143 matched normal eyes. ICP algorithm was used to estimate six single and combined misalignment (CM) parameters, the root mean square (RMS) of the difference in elevation data pre (PreICP-RMS) and post (PosICP-RMS) tomography matching. Corneal keratometry, expressed in the form of M, J0 and J45 (power vector analysis parameters), was used to evaluate the effect of misalignment on corneal curvature measurements. The PreICP-RMS and PosICP-RMS were statistically higher (P < 0.01) in KC than normal eyes. CM increased significantly (p = 0.00), more in KC (16.76 ± 20.88 μm) than in normal eyes (5.43 ± 4.08 μm). PreICP-RMS, PosICP-RMS and CM were correlated with keratoconus grade (p < 0.05). Corneal astigmatism J0 was different (p = 0.01) for the second tomography measurements with misalignment consideration (−1.11 ± 2.35 D) or not (−1.18 ± 2.35 D), while M and J45 kept similar. KC corneas consistently show higher misalignments between successive tomography measurements and lower repeatability compared with healthy eyes. The influence of misalignment is evidently clearer in the estimation of astigmatism than spherical curvature. These higher errors appear correlated with KC progression

    Atomic-Scale Study of Metal–Oxide Interfaces and Magnetoelastic Coupling in Self-Assembled Epitaxial Vertically Aligned Magnetic Nanocomposites

    Get PDF
    Vertically aligned nanocomposites (VANs) of metal/oxide type have recently emerged as a novel class of heterostructures with great scientific and technological potential in the fields of nanomagnetism, multiferroism, and catalysis. One of the salient features of these hybrid materials is their huge vertical metal/oxide interface, which plays a key role in determining the final magnetic and/or transport properties of the composite structure. However, in contrast to their well‐studied planar counterparts, detailed information on the structural features of vertical interfaces encountered in VANs is scarce. In this work, high resolution scanning transmission electron microscopy (STEM) and electron energy‐loss spectroscopy (EELS) are used to provide an element selective atomic‐scale analysis of the interface in a composite consisting of ultrathin, self‐assembled Ni nanowires, vertically epitaxied in a SrTiO3/SrTiO3(001) matrix. Spectroscopic EELS measurements evidence rather sharp interfaces (6–7 Å) with the creation of metallic NiTi bonds and the absence of nickel oxide formation is confirmed by X‐ray absorption spectroscopy measurements. The presence of these well‐defined phase boundaries, combined with a large lattice mismatch between the oxide and metallic species, gives rise to pronounced magnetoelastic effects. Self‐assembled columnar Ni:SrTiO3 composites thus appear as ideal model systems to explore vertical strain engineering in metal/oxide nanostructures

    Evaluating the repeatability of corneal elevation through calculating the misalignment between Successive topography measurements during the follow up of LASIK

    Get PDF
    The study aims to evaluate, using the Iterative Closest Point (ICP) algorithm, the repeatability of successive corneal elevation measurements taken post-LASIK. Two topography maps of 98 LASIK participants were recorded preoperatively (Pre), 1 month (Pos1M) and 3 months postoperatively (Pos3M). Elevation of the second measurement was fitted to the first measurement by calculating using ICP, and correcting for, both translational and rotational misalignment components. The RMS of elevation differences between anterior corneal measurements were statistically significant post-LASIK compared to preoperation (P < 0.05). A misalignment ratio used to describe the weighting of the elevation difference caused by misalignment relative to the total difference remained stable (0.40 and 0.23 for anterior and posterior corneal surfaces, respectively) in different periods. The study also considered the combined misalignment parameter (CM), which represents the total effect of all individual misalignment components on the repeatability of corneal topography maps. CM was significantly greater post-LASIK relative to pre-LASIK (P < 0.05). Overall, the contribution of misalignment to the total difference between successive corneal measurements remained stable pre and post operation, while the combined effect of refractive error correction and optical diameter appeared to have a significant influence on the elevation repeatability in the early stages of the follow up period

    FibroScan-AST (FAST) score for the non-invasive identification of patients with non-alcoholic steatohepatitis with significant activity and fibrosis: a prospective derivation and global validation study

    Get PDF
    BACKGROUND The burden of non-alcoholic fatty liver disease (NAFLD) is increasing globally, and a major priority is to identify patients with non-alcoholic steatohepatitis (NASH) who are at greater risk of progression to cirrhosis, and who will be candidates for clinical trials and emerging new pharmacotherapies. We aimed to develop a score to identify patients with NASH, elevated NAFLD activity score (NAS≥4), and advanced fibrosis (stage 2 or higher [F≥2]). METHODS This prospective study included a derivation cohort before validation in multiple international cohorts. The derivation cohort was a cross-sectional, multicentre study of patients aged 18 years or older, scheduled to have a liver biopsy for suspicion of NAFLD at seven tertiary care liver centres in England. This was a prespecified secondary outcome of a study for which the primary endpoints have already been reported. Liver stiffness measurement (LSM) by vibration-controlled transient elastography and controlled attenuation parameter (CAP) measured by FibroScan device were combined with aspartate aminotransferase (AST), alanine aminotransferase (ALT), or AST:ALT ratio. To identify those patients with NASH, an elevated NAS, and significant fibrosis, the best fitting multivariable logistic regression model was identified and internally validated using boot-strapping. Score calibration and discrimination performance were determined in both the derivation dataset in England, and seven independent international (France, USA, China, Malaysia, Turkey) histologically confirmed cohorts of patients with NAFLD (external validation cohorts). This study is registered with ClinicalTrials.gov, number NCT01985009. FINDINGS Between March 20, 2014, and Jan 17, 2017, 350 patients with suspected NAFLD attending liver clinics in England were prospectively enrolled in the derivation cohort. The most predictive model combined LSM, CAP, and AST, and was designated FAST (FibroScan-AST). Performance was satisfactory in the derivation dataset (C-statistic 0·80, 95% CI 0·76–0·85) and was well calibrated. In external validation cohorts, calibration of the score was satisfactory and discrimination was good across the full range of validation cohorts (C-statistic range 0·74–0·95, 0·85; 95% CI 0·83–0·87 in the pooled external validation patients' cohort; n=1026). Cutoff was 0·35 for sensitivity of 0·90 or greater and 0·67 for specificity of 0·90 or greater in the derivation cohort, leading to a positive predictive value (PPV) of 0·83 (84/101) and a negative predictive value (NPV) of 0·85 (93/110). In the external validation cohorts, PPV ranged from 0·33 to 0·81 and NPV from 0·73 to 1·0. INTERPRETATION The FAST score provides an efficient way to non-invasively identify patients at risk of progressive NASH for clinical trials or treatments when they become available, and thereby reduce unnecessary liver biopsy in patients unlikely to have significant disease

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ψπ+πJ/ψ(J/ψγppˉ)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06×1081.06\times 10^8 ψ\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppˉp\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=186113+6(stat)26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Γ<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    Characterization of Human DNA Polymerase Delta and Its Subassemblies Reconstituted by Expression in the Multibac System

    Get PDF
    Mammalian DNA polymerase δ (Pol δ), a four-subunit enzyme, plays a crucial and versatile role in DNA replication and DNA repair processes. We have reconstituted human Pol δ complexes in insect cells infected with a single baculovirus into which one or more subunits were assembled. This system allowed for the efficient expression of the tetrameric Pol δ holoenzyme, the p125/p50 core dimer, the core+p68 trimer and the core+p12 trimer, as well as the p125 catalytic subunit. These were isolated in milligram amounts with reproducible purity and specific activities by a highly standardized protocol. We have systematically compared their activities in order to gain insights into the roles of the p12 and p68 subunits, as well as their responses to PCNA. The relative specific activities (apparent kcat) of the Pol δ holoenzyme, core+p68, core+p12 and p125/p50 core were 100, 109, 40, and 29. The corresponding apparent Kd's for PCNA were 7.1, 8.7, 9.3 and 73 nM. Our results support the hypothesis that Pol δ interacts with PCNA through multiple interactions, and that there may be a redundancy in binding interactions that may permit Pol δ to adopt flexible configurations with PCNA. The abilities of the Pol δ complexes to fully extend singly primed M13 DNA were examined. All the subassemblies except the core+p68 were defective in their abilities to completely extend the primer, showing that the p68 subunit has an important function in synthesis of long stretches of DNA in this assay. The core+p68 trimer could be reconstituted by addition of p12

    Period Increase and Amplitude Distribution of Kink Oscillation of Coronal Loop

    Get PDF
    Coronal loops exist ubiquitously in the solar atmosphere. These loops puzzle astronomers over half a century. Solar magneto-seismology (SMS) provides a unique way to constrain the physical parameters of coronal loops. Here, we study the evolution of oscillations of a coronal loop observed by the Atmospheric Imaging Assembly (AIA). We measure geometric and physical parameters of the loop oscillations. In particular, we find that the mean period of the oscillations increased from 1048 to 1264 s during three oscillatory cycles. We employ the differential emission measure method and apply the tools of SMS. The evolution of densities inside and outside the loop is analyzed. We found that an increase of density inside the loop and decrease of the magnetic field strength along the loop are the main reasons for the increase in the period during the oscillations. Besides, we also found that the amplitude profile of the loop is different from a profile would it be a homogeneous loop. It is proposed that the distribution of magnetic strength along the loop rather than density stratification is responsible for this deviation. The variation in period and distribution of amplitude provide, in terms of SMS, a new and unprecedented insight into coronal loop diagnostics
    corecore