218 research outputs found

    Molecular cytogenetic aberrations in patients with multiple myeloma studied by interphase fluorescence in situ hybridization

    No full text
    Background: Multiple myeloma (MM) is an incurable hematological disorder characterized by the accumulation of malignant plasma cells within the bone marrow (BM). The clinical heterogeneity of MM is dictated by the cytogenetic aberrations present in the clonal plasma cells (PCs). Cytogenetic studies in MM are hampered by the hypoproliferative nature of plasma cells in MM. Therefore, fluorescence in situ hybridization (FISH) analysis combined with magnetic-activated cell sorting (MACS) is an attractive alternative for evaluation of numerical and structural chromosomal changes in MM. Methods: Interphase FISH studies with three different specific probes for the regions containing 13q14.3 (D13S319), 14q32 (IGHC/IGHV) and 1q12(CEP1 ) were performed in 48 MM patients. Interphase FISH studies with LSI IGH/CCND1, LSI IGH/FGFR3, and LSI IGH/MAF probes were used to detect t(11;14)(q13;q32), t(4;14)(p16;q32), and t(14;16)(q32;q23) in patients with 14q32 rearrangement. Results: Molecular cytogenetic aberrations were found in 40 (83.3%) of the 48 MM patients. 13 patients (27.1%) simultaneously had 13q deletion/monosomy 13 [del(13q14)], illegitimate IGH rearrangement and chromosome 1 abnormality. Del(13q14) was detected in 21 cases (43.7%), and illegitimate IGH rearrangements in 29 (60.4%) including 6 with t(11;14) and 5 with t(4;14). None of 9 patients with illegitimate IGH rearrangements and without t(11;14) or t(4;14) we detected had t(14;16) (q32;q23). 24 of the 48 MM patients (50%) had chromosome 1 abnormalities. Among 21 patients with del(13q14), 15 patients had Amp1q12;16 had IgH rearrangements. Whereas, among 27 cases without del(13q14), 8 had Amp1q12; 13 had IgH rearrangements. There was a strong association between del(13q14) and Amp1q12(c2 = 8.26, Ρ€ < 0.01), and between del(13q14) and IgH rearrangement(c2 = 3.88, p < 0.05). Conclusion: 13q deletion/monosomy 13, IGH rearrangement and chromosome 1 abnormality are frequent in MM. They are not randomly distributed, but strongly interconnected. Interphase FISH technique combined with MACS using CD138-specific antibody is a highly sensitive technique at detecting molecular cytogenetic aberrations in MM.ОбоснованиС: мноТСствСнная ΠΌΠΈΠ΅Π»ΠΎΠΌΠ° (MM) β€” Π½Π΅ΠΈΠ·Π»Π΅Ρ‡ΠΈΠΌΠΎΠ΅ гСматологичСскоС Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠ΅, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‰Π΅Π΅ΡΡ Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½ΠΈΠ΅ΠΌ злокачСствСнных плазматичСских ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π² костном ΠΌΠΎΠ·Π³Π΅ (КM). ΠšΠ»ΠΈΠ½ΠΈΡ‡Π΅ΡΠΊΠ°Ρ Π³Π΅Ρ‚Π΅Ρ€ΠΎΠ³Π΅Π½Π½ΠΎΡΡ‚ΡŒ MM опрСдСляСтся цитогСнСтичСскими абСррациями, ΠΏΡ€ΠΈΡΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΌΠΈ Π² ΠΊΠ»ΠΎΠ½Π΅ плазматичСских ΠΊΠ»Π΅Ρ‚ΠΎΠΊ (ПК). ЦитогСнСтичСскиС исслСдования MM ослоТнСны Π³ΠΈΠΏΠΎΠΏΡ€ΠΎΠ»ΠΈΡ„Π΅Ρ€Π°Ρ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ особСнностями ПК. Π’ связи с этим флуорСсцСнтная гибридизация in situ (FISH) Π² ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΠΈ с сортировкой ΠΊΠ»Π΅Ρ‚ΠΎΠΊ, Π°ΠΊΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹ΠΌΠΈ полями (MACS) прСдставляСтся достойной Π°Π»ΡŒΡ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ²ΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌ ΠΎΡ†Π΅Π½ΠΊΠΈ Ρ‚ΠΎΡ‡Π΅Ρ‡Π½Ρ‹Ρ… ΠΈ структурных ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ хромосом ΠΏΡ€ΠΈ MM. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹: ΠΈΠ½Ρ‚Π΅Ρ€Ρ„Π°Π·Π½Ρ‹Π΅ исслСдования ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ FISH с использованиСм Ρ‚Ρ€Π΅Ρ… Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… спСцифичСских Π·ΠΎΠ½Π΄ΠΎΠ² для участков, содСрТащих 13q14.3 (D13S319), 14q32 (IGHC/IGHV) ΠΈ 1q12(CEP1), ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Ρƒ 48 Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… с MM. Π˜Π½Ρ‚Π΅Ρ€Ρ„Π°Π·Π½Ρ‹Π΅ исслСдования ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ FISH с использованиСм Π·ΠΎΠ½Π΄ΠΎΠ² LSI IGH/CCND1, LSI IGH/FGFR3 ΠΈ LSI IGH/MAF примСняли для Π΄Π΅Ρ‚Π΅ΠΊΡ†ΠΈΠΈ t(11;14)(q13;q32), t(4;14)(p16;q32), ΠΈ t(14;16)(q32;q23) Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с пСрСстройкой 14q32. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹: молСкулярныС цитогСнСтичСскиС Π°Π±Π΅Ρ€Ρ€Π°Ρ†ΠΈΠΈ выявляли Ρƒ 40 (83,3%) ΠΈΠ· 48 Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… с MM. Π£ 13 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² (27,1%) ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ 13q дСлСция/моносомия 13 [del(13q14)], аномальная пСрСстройка IGH ΠΈ аномалия хромосомы 1. Del(13q14) Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Π»ΠΈ Π² 21 случаС (43,7%), Π° Π°Π½ΠΎΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ пСрСстройки IGH β€” Π² 29 (60,4%), Π² Ρ‚ΠΎΠΌ числС Ρƒ 6 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с t(11;14) ΠΈ 5 с t(4;14). Ни Ρƒ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈΠ· 9 Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… с Π°Π½ΠΎΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ пСрСстройками IGH ΠΈ Π±Π΅Π· t(11;14) ΠΈΠ»ΠΈ t(4;14) Π½Π΅ выявляли Ρ‚Ρ€Π°Π½ΡΠ»ΠΎΠΊΠ°Ρ†ΠΈΡŽ t(14;16) (q32;q23). Π£ 24 ΠΈΠ· 48 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с MM (50%) опрСдСляли Π°Π½ΠΎΠΌΠ°Π»ΠΈΠΈ хромосомы 1. Π’ Π³Ρ€ΡƒΠΏΠΏΠ΅ ΠΈΠ· 21 Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… с del(13q14) Π² 15 случаях имСлись пСрСстройки IgH Amp1q12;16. Π’ Ρ‚ΠΎ ΠΆΠ΅ врСмя ΠΈΠ· 27 случаСв Π±Π΅Π· del(13q14) Ρƒ 8 ΡΠΎΠ΄Π΅Ρ€ΠΆΠ°Π»ΠΈΡΡŒ Amp1q12; Π² 13 случаях ΠΎΡ‚ΠΌΠ΅Ρ‡Π°Π»ΠΈ пСрСстройки IgH. ВыявлСна взаимосвязь ΠΌΠ΅ΠΆΠ΄Ρƒ del(13q14) ΠΈ Amp1q12(Ο‡2 = 8,26, p < 0,01) ΠΈ ΠΌΠ΅ΠΆΠ΄Ρƒ del(13q14) ΠΈ пСрСстройками IgH (Ο‡2 = 3,88, p < 0,05). Π’Ρ‹Π²ΠΎΠ΄Ρ‹: 13q Π΄Π΅Π»Π΅Ρ†ΠΈΡŽ/моносомию 13, пСрСстройку IGH ΠΈ аномалию хромосомы 1 часто ΠΎΡ‚ΠΌΠ΅Ρ‡Π°ΡŽΡ‚ ΠΏΡ€ΠΈ MM, ΠΏΡ€ΠΈΡ‡Π΅ΠΌ ΠΈΡ… распрСдСлСниС Π½Π΅ случайно ΠΈ тСсно взаимосвязано. Π˜Π½Ρ‚Π΅Ρ€Ρ„Π°Π·Π½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· FISH Π² ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΠΈ с MACS с использованиСм CD138-спСцифичных Π°Π½Ρ‚ΠΈΡ‚Π΅Π» являСтся Π²Ρ‹ΡΠΎΠΊΠΎΡ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π΄Π΅Ρ‚Π΅ΠΊΡ†ΠΈΠΈ молСкулярных цитогСнСтичСских Π°Π±Π΅Ρ€Ρ€Π°Ρ†ΠΈΠΉ ΠΏΡ€ΠΈ MM

    Learning Shape Segmentation Using Constrained Spectral Clustering and Probabilistic Label Transfer

    Get PDF
    International audienceWe propose a spectral learning approach to shape segmentation. The method is composed of a constrained spectral clustering algorithm that is used to supervise the segmentation of a shape from a training data set, followed by a probabilistic label transfer algorithm that is used to match two shapes and to transfer cluster labels from a training-shape to a test-shape. The novelty resides both in the use of the Laplacian embedding to propagate must-link and cannot-link constraints, and in the segmentation algorithm which is based on a learn, align, transfer, and classify paradigm. We compare the results obtained with our method with other constrained spectral clustering methods and we assess its performance based on ground-truth data

    Measurements of the observed cross sections for e+eβˆ’β†’e^+e^-\to exclusive light hadrons containing Ο€0Ο€0\pi^0\pi^0 at s=3.773\sqrt s= 3.773, 3.650 and 3.6648 GeV

    Full text link
    By analyzing the data sets of 17.3, 6.5 and 1.0 pbβˆ’1^{-1} taken, respectively, at s=3.773\sqrt s= 3.773, 3.650 and 3.6648 GeV with the BES-II detector at the BEPC collider, we measure the observed cross sections for e+eβˆ’β†’Ο€+Ο€βˆ’Ο€0Ο€0e^+e^-\to \pi^+\pi^-\pi^0\pi^0, K+Kβˆ’Ο€0Ο€0K^+K^-\pi^0\pi^0, 2(Ο€+Ο€βˆ’Ο€0)2(\pi^+\pi^-\pi^0), K+Kβˆ’Ο€+Ο€βˆ’Ο€0Ο€0K^+K^-\pi^+\pi^-\pi^0\pi^0 and 3(Ο€+Ο€βˆ’)Ο€0Ο€03(\pi^+\pi^-)\pi^0\pi^0 at the three energy points. Based on these cross sections we set the upper limits on the observed cross sections and the branching fractions for ψ(3770)\psi(3770) decay into these final states at 90% C.L..Comment: 7 pages, 2 figure

    Partial wave analysis of J/\psi \to \gamma \phi \phi

    Get PDF
    Using 5.8Γ—107J/ψ5.8 \times 10^7 J/\psi events collected in the BESII detector, the radiative decay J/Οˆβ†’Ξ³Ο•Ο•β†’Ξ³K+Kβˆ’KS0KL0J/\psi \to \gamma \phi \phi \to \gamma K^+ K^- K^0_S K^0_L is studied. The ϕϕ\phi\phi invariant mass distribution exhibits a near-threshold enhancement that peaks around 2.24 GeV/c2c^{2}. A partial wave analysis shows that the structure is dominated by a 0βˆ’+0^{-+} state (Ξ·(2225)\eta(2225)) with a mass of 2.24βˆ’0.02+0.03βˆ’0.02+0.032.24^{+0.03}_{-0.02}{}^{+0.03}_{-0.02} GeV/c2c^{2} and a width of 0.19Β±0.03βˆ’0.04+0.060.19 \pm 0.03^{+0.06}_{-0.04} GeV/c2c^{2}. The product branching fraction is: Br(J/Οˆβ†’Ξ³Ξ·(2225))β‹…Br(Ξ·(2225)→ϕϕ)=(4.4Β±0.4Β±0.8)Γ—10βˆ’4Br(J/\psi \to \gamma \eta(2225))\cdot Br(\eta(2225)\to \phi\phi) = (4.4 \pm 0.4 \pm 0.8)\times 10^{-4}.Comment: 11 pages, 4 figures. corrected proof for journa

    Direct Measurements of Absolute Branching Fractions for D0 and D+ Inclusive Semimuonic Decays

    Full text link
    By analyzing about 33 pbβˆ’1\rm pb^{-1} data sample collected at and around 3.773 GeV with the BES-II detector at the BEPC collider, we directly measure the branching fractions for the neutral and charged DD inclusive semimuonic decays to be BF(D0β†’ΞΌ+X)=(6.8Β±1.5Β±0.7)BF(D^0 \to \mu^+ X) =(6.8\pm 1.5\pm 0.7)% and BF(D+β†’ΞΌ+X)=(17.6Β±2.7Β±1.8)BF(D^+ \to \mu^+ X) =(17.6 \pm 2.7 \pm 1.8)%, and determine the ratio of the two branching fractions to be BF(D+β†’ΞΌ+X)BF(D0β†’ΞΌ+X)=2.59Β±0.70Β±0.25\frac{BF(D^+ \to \mu^+ X)}{BF(D^0 \to \mu^+ X)}=2.59\pm 0.70 \pm 0.25

    Measurements of the observed cross sections for exclusive light hadron production in e^+e^- annihilation at \sqrt{s}= 3.773 and 3.650 GeV

    Full text link
    By analyzing the data sets of 17.3 pbβˆ’1^{-1} taken at s=3.773\sqrt{s}=3.773 GeV and 6.5 pbβˆ’1^{-1} taken at s=3.650\sqrt{s}=3.650 GeV with the BESII detector at the BEPC collider, we have measured the observed cross sections for 12 exclusive light hadron final states produced in e+eβˆ’e^+e^- annihilation at the two energy points. We have also set the upper limits on the observed cross sections and the branching fractions for ψ(3770)\psi(3770) decay to these final states at 90% C.L.Comment: 8 pages, 5 figur

    Search for the Rare Decays J/Psi --> Ds- e+ nu_e, J/Psi --> D- e+ nu_e, and J/Psi --> D0bar e+ e-

    Full text link
    We report on a search for the decays J/Psi --> Ds- e+ nu_e + c.c., J/Psi --> D- e+ nu_e + c.c., and J/Psi --> D0bar e+ e- + c.c. in a sample of 5.8 * 10^7 J/Psi events collected with the BESII detector at the BEPC. No excess of signal above background is observed, and 90% confidence level upper limits on the branching fractions are set: B(J/Psi --> Ds- e+ nu_e + c.c.)<4.8*10^-5, B(J/Psi --> D- e+ nu_e + c.c.) D0bar e+ e- + c.c.)<1.1*10^-5Comment: 10 pages, 4 figure

    Measurements of psi(2S) decays to octet baryon-antibaryon pairs

    Get PDF
    With a sample of 14 million psi(2S) events collected by the BESII detector at the Beijing Electron Positron Collider (BEPC), the decay channels psi(2S)->p p-bar, Lambda Lambda-bar, Sigma0 Sigma0-bar, Xi Xi-bar are measured, and their branching ratios are determined to be (3.36+-0.09+-0.24)*10E-4, (3.39+-0.20+-0.32)*10E-4, (2.35+-0.36+-0.32)*10E-4, (3.03+-0.40+-0.32)*10E-4, respectively. In the decay psi(2S)->p p-bar, the angular distribution parameter alpha is determined to be 0.82+-0.17+-0.04.Comment: 8 pages, 8 figure

    A study of charged kappa in J/Οˆβ†’KΒ±KsΟ€βˆ“Ο€0J/\psi \to K^{\pm} K_s \pi^{\mp} \pi^0

    Full text link
    Based on 58Γ—10658 \times 10^6 J/ψJ/\psi events collected by BESII, the decay J/Οˆβ†’KΒ±KsΟ€βˆ“Ο€0J/\psi \to K^{\pm} K_s \pi^{\mp} \pi^0 is studied. In the invariant mass spectrum recoiling against the charged Kβˆ—(892)Β±K^*(892)^{\pm}, the charged ΞΊ\kappa particle is found as a low mass enhancement. If a Breit-Wigner function of constant width is used to parameterize the kappa, its pole locates at (849Β±77βˆ’14+18)βˆ’i(256Β±40βˆ’22+46)(849 \pm 77 ^{+18}_{-14}) -i (256 \pm 40 ^{+46}_{-22}) MeV/c2c^2. Also in this channel, the decay J/Οˆβ†’Kβˆ—(892)+Kβˆ—(892)βˆ’J/\psi \to K^*(892)^+ K^*(892)^- is observed for the first time. Its branching ratio is (1.00Β±0.19βˆ’0.32+0.11)Γ—10βˆ’3(1.00 \pm 0.19 ^{+0.11}_{-0.32}) \times 10^{-3}.Comment: 14 pages, 4 figure

    Direct Measurements of the Branching Fractions for D0β†’Kβˆ’e+Ξ½eD^0 \to K^-e^+\nu_e and D0β†’Ο€βˆ’e+Ξ½eD^0 \to \pi^-e^+\nu_e and Determinations of the Form Factors f+K(0)f_{+}^{K}(0) and f+Ο€(0)f^{\pi}_{+}(0)

    Get PDF
    The absolute branching fractions for the decays D0β†’Kβˆ’e+Ξ½eD^0 \to K^-e ^+\nu_e and D0β†’Ο€βˆ’e+Ξ½eD^0 \to \pi^-e^+\nu_e are determined using 7584Β±198Β±3417584\pm 198 \pm 341 singly tagged DΛ‰0\bar D^0 sample from the data collected around 3.773 GeV with the BES-II detector at the BEPC. In the system recoiling against the singly tagged DΛ‰0\bar D^0 meson, 104.0Β±10.9104.0\pm 10.9 events for D0β†’Kβˆ’e+Ξ½eD^0 \to K^-e ^+\nu_e and 9.0Β±3.69.0 \pm 3.6 events for D0β†’Ο€βˆ’e+Ξ½eD^0 \to \pi^-e^+\nu_e decays are observed. Those yield the absolute branching fractions to be BF(D0β†’Kβˆ’e+Ξ½e)=(3.82Β±0.40Β±0.27)BF(D^0 \to K^-e^+\nu_e)=(3.82 \pm 0.40\pm 0.27)% and BF(D0β†’Ο€βˆ’e+Ξ½e)=(0.33Β±0.13Β±0.03)BF(D^0 \to \pi^-e^+\nu_e)=(0.33 \pm 0.13\pm 0.03)%. The vector form factors are determined to be ∣f+K(0)∣=0.78Β±0.04Β±0.03|f^K_+(0)| = 0.78 \pm 0.04 \pm 0.03 and ∣f+Ο€(0)∣=0.73Β±0.14Β±0.06|f^{\pi}_+(0)| = 0.73 \pm 0.14 \pm 0.06. The ratio of the two form factors is measured to be ∣f+Ο€(0)/f+K(0)∣=0.93Β±0.19Β±0.07|f^{\pi}_+(0)/f^K_+(0)|= 0.93 \pm 0.19 \pm 0.07.Comment: 6 pages, 5 figure
    • …
    corecore