406 research outputs found

    MHC class I loci of the Bar-Headed goose (Anser indicus)

    Get PDF
    MHC class I proteins mediate functions in anti-pathogen defense. MHC diversity has already been investigated by many studies in model avian species, but here we chose the bar-headed goose, a worldwide migrant bird, as a non-model avian species. Sequences from exons encoding the peptide-binding region (PBR) of MHC class I molecules were isolated from liver genomic DNA, to investigate variation in these genes. These are the first MHC class I partial sequences of the bar-headed goose to be reported. A preliminary analysis suggests the presence of at least four MHC class I genes, which share great similarity with those of the goose and duck. A phylogenetic analysis of bar-headed goose, goose and duck MHC class I sequences using the NJ method supports the idea that they all cluster within the anseriforms clade

    Decreased systemic bioavailability of L-arginine in patients with cystic fibrosis

    Get PDF
    BACKGROUND: L-arginine is the common substrate for nitric oxide synthases and arginases. Increased arginase levels in the blood of patients with cystic fibrosis may result in L-arginine deficiency and thereby contribute to low airway nitric oxide formation and impaired pulmonary function. METHODS: Plasma amino acid and arginase levels were studied in ten patients with cystic fibrosis before and after 14 days of antibiotic treatment for pulmonary exacerbation. Patients were compared to ten healthy non-smoking controls. RESULTS: Systemic arginase levels measured by ELISA were significantly increased in cystic fibrosis with exacerbation compared to controls (17.3 ± 12.0 vs. 4.3 ± 3.4 ng/ml, p < 0.02). Arginase levels normalized with antibiotic treatment. Plasma L-arginine was significantly reduced before (p < 0.05) but not after treatment. In contrast, L-ornithine, proline, and glutamic acid, all downstream products of arginase activity, were normal before, but significantly increased after antibiotic therapy. Bioavailability of L-arginine was significantly reduced in cystic fibrosis before and after exacerbation (p < 0.05, respectively). CONCLUSION: These observations provide further evidence for a disturbed balance between the L-arginine metabolic pathways in cystic fibrosis

    Persistent Photoconductivity Studies in Nanostructured ZnO UV Sensors

    Get PDF
    The phenomenon of persistent photoconductivity is elusive and has not been addressed to an extent to attract attention both in micro and nanoscale devices due to unavailability of clear material systems and device configurations capable of providing comprehensive information. In this work, we have employed a nanostructured (nanowire diameter 30–65 nm and 5 μm in length) ZnO-based metal–semiconductor–metal photoconductor device in order to study the origin of persistent photoconductivity. The current–voltage measurements were carried with and without UV illumination under different oxygen levels. The photoresponse measurements indicated a persistent conductivity trend for depleted oxygen conditions. The persistent conductivity phenomenon is explained on the theoretical model that proposes the change of a neutral anion vacancy to a charged state

    Mono-dispersed Functional Polymeric Nanocapsules with Multi-lacuna via Soapless Microemulsion Polymerization with Spindle-like α-Fe2O3Nanoparticles as Templates

    Get PDF
    The mono-dispersed crosslinked polymeric multi-lacuna nanocapsules (CP(St–OA) nanocapsules) about 40 nm with carboxylic groups on their inner and outer surfaces were fabricated in the present work. The small conglomerations of the oleic acid modified spindle-like α-Fe2O3nanoparticles (OA–Fe2O3) were encapsulated in the facile microemulsion polymerization with styrene (St) as monomer and divinyl benzene (DVB) as crosslinker. Then the templates, small conglomerations of OA–Fe2O3, were etched with HCl in tetrahydrofuran (THF). The surface carboxylic groups of the crosslinked polymeric multi-lacuna nanocapsules were validated by the Zeta potential analysis

    OsTIR1 and OsAFB2 Downregulation via OsmiR393 Overexpression Leads to More Tillers, Early Flowering and Less Tolerance to Salt and Drought in Rice

    Get PDF
    The microRNA miR393 has been shown to play a role in plant development and in the stress response by targeting mRNAs that code for the auxin receptors in Arabidopsis. In this study, we verified that two rice auxin receptor gene homologs (OsTIR1 and OsAFB2) could be targeted by OsmiR393 (Os for Oryza sativa). Two new phenotypes (increased tillers and early flowering) and two previously observed phenotypes (reduced tolerance to salt and drought and hyposensitivity to auxin) were observed in the OsmiR393-overexpressing rice plants. The OsmiR393-overexpressing rice demonstrated hyposensitivity to synthetic auxin-analog treatments. These data indicated that the phenotypes of OsmiR393-overexpressing rice may be caused through hyposensitivity to the auxin signal by reduced expression of two auxin receptor genes (OsTIR1 and OsAFB2). The expression of an auxin transporter (OsAUX1) and a tillering inhibitor (OsTB1) were downregulated by overexpression of OsmiR393, which suggested that a gene chain from OsmiR393 to rice tillering may be from OsTIR1 and OsAFB2 to OsAUX1, which affected the transportation of auxin, then to OsTB1, which finally controlled tillering. The positive phenotypes (increased tillers and early flowering) and negative phenotypes (reduced tolerance to salt and hyposensitivity to auxin) of OsmiR393-overexpressing rice present a dilemma for molecular breeding

    Dynamic hydraulic jump and retrograde sedimentation in an open channel induced by sediment supply: experimental study and SPH simulation

    Get PDF
    Mountainous torrents often carry large amounts of loose materials into the rivers, thus causing strong sediment transport. Experimentally it was found for the first time that when the intensive sediment motion occurs downstream over a gentle slope, the siltation of the riverbed is induced and the sediment particles can move upstream rapidly in the form of a retrograde sand wave, resulting in a higher water level along the river. To further study the complex mechanisms of this problem, a sediment mass model in the framework of the Smoothed Particle Hydrodynamics (SPH) method was presented to simulate the riverbed evolution, sediment particle motion, and the generation and development of dynamic hydraulic jump under the condition of sufficient sediment supply over a steep slope with varying angles. Because the sediment is not a continuous medium, the marker particle tracking approach was proposed to represent a piece of sediment with a marked sediment particle. The two-phase SPH model realizes the interaction between the sediment and fluid by moving the bed boundary particles up and down, so it can reasonably treat the fluid-sediment interfaces with high CPU efficiency. The critical triggering condition of sediment motion, the propagation of the hydraulic jump and the initial siltation position were all systematically studied. The experimental and numerical results revealed the extra disastrous sediment effect in a mountainous flood. The findings will be useful references to the disaster prevention and mitigation in mountainous rivers

    Strong light-matter coupling in two-dimensional atomic crystals

    Full text link
    Two dimensional (2D) atomic crystals of graphene, and transition metal dichalcogenides have emerged as a class of materials that show strong light-matter interaction. This interaction can be further controlled by embedding such materials into optical microcavities. When the interaction is engineered to be stronger than the dissipation of light and matter entities, one approaches the strong coupling regime resulting in the formation of half-light half-matter bosonic quasiparticles called microcavity polaritons. Here we report the evidence of strong light-matter coupling and formation of microcavity polaritons in a two dimensional atomic crystal of molybdenum disulphide (MoS2) embedded inside a dielectric microcavity at room temperature. A Rabi splitting of 46 meV and highly directional emission is observed from the MoS2 microcavity owing to the coupling between the 2D excitons and the cavity photons. Realizing strong coupling effects at room temperature in a disorder free potential landscape is central to the development of practical polaritonic circuits and switches.Comment: 25 pages, 7 figure

    In-situ FTIR spectroscopic studies of electro oxidation of ethanol in alkaline media at a nm-Pt/GC electrode

    Get PDF
    The electro-oxidation of ethanol on a nm-Pt/GC electrode in alkaline solutions was investigated by using cyclic Voltammetry and in-situ FTIR spectroscopy. The results demonstrated that the main product of ethanol oxidation was CH3 COO-, only small quantity of CH3 CHO was determined simultaneously. In contrast with the dual path reaction mechanism for the oxidation of ethanol in acid media, the oxidation of ethanol in alkaline media was revealed via the intermediate process of dissociative adsorption
    corecore